• Жизнь на спутнике европа. Наса обнаружило гейзеры на европе, спутнике юпитера. Есть ли жизнь на Европе

    Астрономы пришли к заключению, что под толстым слоем льда, покрывающего спутник Юпитера Европу, находится океан воды, чрезвычайно богатый кислородом. Если бы в этом океане была жизнь, то такого объема растворенного кислорода хватило бы на поддержание миллионов тонн рыбы. Впрочем, пока о существовании сколь-нибудь сложных форм жизни на Европе речи не идет.

    Ученые говорят, что последние исследования океана на Европе свидетельствуют в пользу того, что в данном огромном бассейне есть все условия для возникновения жизни, по крайней мере на микробактериальном уровне.

    Европа является одним из самых интересных спутников Юпитера. По своим размерам она сопоставима с Луной, однако Европа покрыта слоем океана, глубина которого составляет порядка 100-160 километров. Правда, на поверхности этот океан замерз, толщина льда, согласно современным оценкам, составляет около 3-4 километров. Руководствуясь земным опытом, можно утверждать, что там, где есть вода, должна быть и жизнь. Раз на Европе вода есть, более того, там ее очень много, то и шансов на обитание там жизни тоже немало.

    Еще больше шансов на возникновение жизни на Европе, если принять во внимание и другие факторы. Последние моделирования, проведенные в НАСА, говорят о том, что теоретически Европа могла бы поддерживать наиболее распространенные морские формы жизни, обитающие на Земле.

    Лед на поверхности спутника, как и вся вода на нем, состоит преимущественно из водорода и кислорода. С учетом того, что Европа находится под постоянным ударом радиации от Юпитера и Солнца, то лед формирует так называемый свободный кислород и другие оксиданты, такие как пероксид водорода. Очевидно, что активные оксиданты есть и под поверхностью Европы. В свое время именно активный кислород привел к появлению многоклеточной жизни на Земле.


    В прошлом космический аппарат «Галилео» обнаружил на Европе ионосферу, что указывало на существование атмосферы у спутника. Впоследствии с помощью орбитального телескопа «Хаббл» у Европы действительно были замечены следы крайне слабой атмосферы, давление которой не превышает 1 микропаскаль. Атмосфера состоит из кислорода, образовавшегося в результате разложения льда на водород и кислород под действием солнечной радиации (лёгкий водород при столь низком тяготении улетучивается в космос).

    Единственным моментом, который затрудняет возникновение сложных форм жизни, является замкнутость океана. То есть в Солнечной системе в составе астероидов и комет летает довольно много сложных органических соединений, но им, при попадании на поверхность Европы, почти невозможно проникнуть сквозь толстый слой льда. Таким образом, жизнь на Европе, должна была изначально зародиться в недрах океана.

    Однако последние исследования и модели Европы говорят о том, что органическим соединениям совершенно не обязательно проникать на глубину 3-4 километров. Уже примерно на глубине 10 метров концентрация кислорода значительно возрастает, а плотность льда снижается. Таким образом, теоретически, жизнь на Европе может быть уже на глубине 10 метров.

    Ричард Гринберг из планетарной лаборатории Университета штата Аризона, говорит, что для поиска жизни на Европе совершенно не обязательно исследовать подледный океан.

    Кроме того, ученый полагает, что температура воды на Европе может быть существенно выше, чем предполагает большинство исследователей. Дело в том, что Европа находится в сильном гравитационном поле Юпитера, который притягивает Европу в 1000 раз сильнее, чем Земля притягивает Луну. Очевидно, что под таким притяжением твердая поверхность Европы на которой расположен океан, должна быть очень активной в геологическом плане, а раз так, то здесь должны быть активные вулканы, извержения которых поднимают температуру воды.


    Гринберг говорит, что последние компьютерные модели показывают, что поверхность Европы фактически изменяется каждые 50 млн лет. Кроме того, как минимум 50% дна Европы - это горные хребты, образующиеся под воздействием гравитации Юпитера. Именно гравитация ответственна и за то, что значительная часть кислорода на Европе расположена в верхних слоях океана.

    "Примерно 40% поверхности Европы - это хаотичные местности. Можно с определенной долей уверенности сказать и о том, что на дне есть много разломов, которые хранят тяжелые химические элементы", - говорит ученый.

    С учетом нынешних динамических процессов на Европе, ученые подсчитали, что для достижения того же уровня насыщения кислородом, что и на Земле, океану Европы достаточно всего 12 млн лет. "За этот период времени тут образуется оксидных соединений достаточно для того, чтобы поддерживать самую большую морскую жизнь, что есть на нашей планете", - отмечает он.

    Период обращения вокруг своей оси синхронизирован (повёрнут к Юпитеру одной стороной) Наклон осевого вращения отсутствует Альбедо 0,67 Температура поверхности 103 К (средняя) Атмосфера Почти отсутствует, имеются следы кислорода

    История открытия и название

    Название «Европа» было предложено С. Мариусом в году, однако в течение долгого времени оно практически не использовалось. Галилей назвал четыре открытые им спутника Юпитера «планетами Медичи » и дал им порядковые номера; Европу он обозначил как «второй спутник Юпитера». Лишь с середины XX века название «Европа» стало общеупотребительным.

    Физические характеристики

    Внутреннее строение Европы

    Европа относится к числу крупнейших спутников планет Солнечной системы ; по размерам она близка к Луне .

    Предполагают, что поверхность Европы претерпевает постоянные изменения, в частности, образуются новые разломы. Края некоторых трещин могут двигаться относительно друг друга, причём подповерхностная жидкость иногда может подниматься через трещины наверх. На Европе имеются протяжённые двойные хребты (см. снимок); возможно, они образуются в результате нарастания льда вдоль кромок открывающихся и закрывающихся трещин (см. схему образования хребтов).

    Нередко встречаются и тройные хребты. Полагают, что механизм их образования происходит по следующей схеме . На первом этапе в результате приливных деформаций в ледяном панцире образуется трещина, края которой «дышат», разогревая окружающее вещество. Вязкий лёд внутренних слоёв расширяет трещину и поднимается вдоль неё к поверхности, загибая её края в стороны и вверх. Выход вязкого льда на поверхность образует центральный хребет, а загнутые края трещины - боковые хребты. Эти геологические процессы могут сопровождаться разогревом вплоть до плавления локальных областей и возможных проявлений криовулканизма .

    На поверхности спутника имеются протяжённые полосы, покрытые рядами параллельных бороздок. Центр полос светлый, а края тёмные и размытые. Предположительно, полосы образовались в результате серий криовулканических водных извержений вдоль трещин. При этом тёмные края полос, возможно, сформировались в результате выброса на поверхность газа и осколков пород. Имеются и полосы другого типа (см. снимок), которые, как полагают, образовались в результате «разъезжания» двух поверхностных плит, с дальнейшим заполнением трещины веществом из недр спутника.

    Рельеф некоторых частей поверхности позволяет предположить, что в этих участках поверхность когда-то была полностью расплавлена, и в воде даже плавали льдины и айсберги. Причём видно, что льдины (вмороженные ныне в ледяную поверхность) ранее образовывали единую структуру, но затем разъехались и повернулись.

    Обнаружены тёмные «веснушки» (см. снимок) - выпуклые и вогнутые образования, которые могли сформироваться в результате процессов, аналогичным лавовым излияниям (под действием внутренних сил «тёплый», мягкий лёд двигается от нижней части поверхностной корки вверх, а холодный лёд оседает, погружаясь вниз; это ещё одно из доказательств присутствия жидкого, тёплого океана под поверхностью). Встречаются и более обширные тёмные пятна (см снимок) неправильной формы, образовавшиеся, предположительно, в результате расплавления поверхности под действием приливов океана, либо в результате выхода внутреннего вязкого льда. Таким образом, по тёмным пятнам можно судить о химическом составе внутреннего океана и, возможно, прояснить в будущем вопрос о существовании в нём жизни .

    Предполагается, что подлёдный океан Европы близок по своим параметрам к участкам океанов Земли вблизи глубоководных геотермальных источников, а также к подлёдным озёрам, таким, как озеро Восток в Антарктиде . В таких водоёмах может существовать жизнь . В то же время, некоторые учёные полагают, что океан Европы может представлять собой довольно ядовитую субстанцию, не слишком подходящую для жизнедеятельности организмов.

    Помимо Европы, океаны предположительно имеются на Ганимеде и Каллисто (судя по структуре их магнитных полей). Но, согласно расчётам, жидкий слой на этих спутниках начинается глубже и имеет температуру существенно ниже нуля (при этом вода остаётся в жидком состоянии благодаря высокому давлению).

    Открытие на Европе водяного океана имеет важное значение для поисков внеземной жизни . Поскольку поддержание океана в тёплом состоянии происходит не столько благодаря солнечному излучению, сколько в результате приливного разогрева, то это снимает необходимость наличия близкой к планете звезды для существования жидкой воды - необходимого условия возникновения белковой жизни . Следовательно, условия для формирования жизни могут возникать в периферийных областях звёздных систем, около маленьких звёзд и даже вдали от звёзд, например, в системах планетаров .

    Атмосфера

    Субмарина («гидробот») проникает в океан Европы (взгляд художника)

    В последние годы разработано несколько перспективных проектов изучения Европы с помощью космических аппаратов. Один из них - амбициозный проект Jupiter Icy Moons Orbiter , который первоначально планировался в рамках программы «Прометей» по разработке космического аппарата с ядерной энергоустановкой и ионным двигателем . Этот план был отменён в 2005 году из-за нехватки средств. В настоящее время в НАСА прорабатывается проект Europa Orbiter , предполагающий вывод на орбиту Европы космического аппарата с целью подробного изучения спутника. Запуск аппарата может быть произведён в ближайшие 7-10 лет, при этом возможно сотрудничество с ЕКА , которое также разрабатывает проекты по изучению Европы. Однако в настоящее время () пока нет конкретных планов по финансированию и осуществлению этого проекта.

    Европа в фантастике, кино и играх

    • Европа играет важную роль в романе Артура Кларка «2010: Одиссея Два» и одноимённом фильме Питера Хаймса. Внеземной разум намеревается ускорить эволюцию примитивной жизни, имеющейся в подлёдном океане Европы, и с этой целью трансформирует Юпитер в звезду . В романе «2061: Одиссея Три» Европа предстаёт уже как тропический водный мир.
    В романе Кларка "Молот Господень" (1996) Европа описана как безжизненный мир.
    • В «Схизматрице» Брюса Стерлинга Европа описана как мёртвый «ледяной» мир с безжизненным внутренним океаном. Одна из человеческих цивилизаций, расселившихся по Солнечной системе , принимает решение переселиться на Европу. Они создают на спутнике биосферу, а также полностью видоизменяют человека, чтобы он мог комфортно существовать в океане Европы.
    • В повести Грега Бира «Божья кузница» Европа разрушается пришельцами, которые используют её лёд с целью изменения среды обитания на других планетах.
    • В произведении Дэна Симмонса «Илион» Европа является местом обитания одной из разумных машин.
    • В книге Йена Дугласа «Схватка за Европу » на Европе находится ценный инопланетный артефакт, за обладание которым в 2067 году сражаются американские и китайские войска.
    • В повести Мишеля Саважа «Узники Европы» («Outlaws of Europa») ледяной спутник превращён в гигантскую тюрьму.
    • В компьютерной игре Infantry под ледяной корой Европы расположены города.
    • В игре Battlezone Европа в числе некоторых других тел Солнечной Системы представлена в виде холодной, ледяной арены битвы двух сверхдержав: США и воображаемого Советского Блока.
    • В игре Abyss: Incident at Europa действие происходит на подводной базе в океане Европы.
    • В одном из эпизодов аниме Cowboy Bebop команда космического корабля Bebop вынужденно высаживается на Европу, которая изображена в виде провинциальной планеты с маленьким населением.
    • Помимо художественных произведений имеются концепции (довольно фантастичные) колонизации Европы . В частности, в рамках проекта «Артемис» ( , , ) предлагается использовать жилища типа иглу либо размещать базы на внутренней стороне ледяной коры (создавая там «воздушные пузыри»); океан предполагается исследовать с помощью подводных лодок. А политолог и инженер авиакосмической техники Т. Гэнгэйл даже разработал календарь для европанских колонистов (см. ).

    См. также

    Литература

    • Ротери Д. Планеты. - М.: Фаир-пресс, 2005. ISBN 5-8183-0866-9
    • Под ред. Д. Моррисона. Спутники Юпитера. - М.: Мир, 1986. В 3-х томах, 792 с.

    Ссылки

    Примечания

    Европа была открыта в 1610 году Галилео Галилеем. Симон Мариус (Марий) (1573-1624), немецкий астроном, наблюдал эти спутники Юпитера одновременно с Галилеем и оспаривал приоритет их открытия. Он же дал названия этим спутникам по именам древнегреческих мифологических героев. Европа, дочь финикийского царя Агенора, была похищена Юпитером, который принял облик быка.

    Европа - второй спутник Юпитера, по величине немного меньше Ио и сравнимый с Луной. Экваториальный радиус 1569 км, средняя плотность 3.01 (г/см 3). По форме это круглый шар, не имеющий сжатия, выступов и впадин. Это ледяной спутник, отражающий значительную часть падающего на него света. Альбедо Европы составляет 0.64. Некоторые физические характеристики представлены в таблице.

    Внутреннее строение и поверхность Европы

    Согласно новым результатам космического аппарата Галилео, Европа имеет металлическое ядро и внутреннюю структуру, подобную Земле. В недрах Европы выделяется энергия приливных взаимодействий, которая поддерживает в жидком виде толстую мантию или глубочайший подледный океан. Благодаря небольшому эксцентриситету орбиты и гравитационному воздействию других спутников Юпитера рассеиваемая энергия довольно велика, поэтому океан может быть теплым. Предполагается, что глубина океана составляет несколько десятков километров, а ледяная кора всего несколько километров. Эта оболочка очень хрупкая и под действием перемещающегося приливного выступа иногда лопается, образуя доступ жидкой воды. Европа является удивительным местом, где существует масса проявлений геологической активности.

    Поверхность Европы представляет собой ледяную оболочку, покрытую глобальной сетью искривленных линий. Повидимому, это трещины в ледяной коре, вызываемые тектоническими процессами. Размер и геометрия некоторых особенностей указывают на то, что существует тонкий ледяной слой, покрытый водой или мокрым льдом, а также существует движение, напоминающее дрейф земных айсбергов. Ледяная корка в местах разломов смазывается теплым льдом или даже жидкой водой. Эти результаты подвинули ученых еще на один шаг к разрешению вопроса, достаточно ли тепла на Европе, чтобы удовлетворять условиям возникновения жизни.

    Существуют три основных критерия для возможности развития жизни вне Земли - это присутствие воды, органических молекул и достаточного количества тепла. Первые два критерия на Европе выполняются - Европа имеет водяной лед, а органические соединения широко распространены в солнечной системе. Самый большой вопрос, достаточно ли тепла генерируется внутри спутника. Новые снимки показали, что на Европе существует достаточно тепла для образования потоков на поверхности, что под ледяной коркой возможно существование теплого льда или даже жидкой воды. Таким образом, Европа имеет большой потенциал удовлетворить и этому критерию для возникновения экзобиологии.

    Атмосфера

    В 1997 году приборы Галилео обнаружили ионосферу Европы, что указывает на то, что у этого ледяного спутника есть атмосфера. На Европе этот ионизированный слой атмосферы образован либо радиацией Солнца, либо энергетическими частицами из магнитосферы Юпитера. Европа, как и все другие галилеевы спутники, погружена в эту магнитосферу. Заряженные частицы магнитосферы Юпитера ударяются с большой энергией о ледяную поверхность Европы, выбивая атомы из молекул воды с поверхности спутника. Максимальная плотность ионосферы составляет 10 000 электронов на см 3, что значительно ниже, чем средняя плотность от 20 000 до 250 000 в ионосфере Юпитера. Это указывает на то, что ионосфера Европы очень разреженная, тем не менее для ученых этого достаточно, чтобы подтвердить присутствие атмосферы на Европе.

    Эти новые данные Галилео подтвердили наблюдения Хаббловского телескопа о наличии эмиссии кислорода на Европе. В 1995 году астрономы, используя Хаббловский телескоп, обнаружили присутствие чрезвычайно разреженной атмосферы молекулярного кислорода на Европе. Кроме Земли известны только 2 объекта солнечной системы, а именно, планеты Марс и Венера, которые имеют молекулярный кислород в атмосфере. Кислородная атмосфера Европы так разрежена, что давление на поверхности составляет одну стомиллиардную часть от земного. Удивительно, что Хаббловский телескоп смог обнаружить такой чрезвычайно разреженный газ на таком далеком расстоянии.

    Ученые предварительно предсказывали, что Европа может иметь атмосферу, содержащую кислород. Однако в отличие от Земли, где организмы генерируют и поддерживают содержание кислорода в атмосфере на уровне 21 %, на Европе кислород образуется небиологическими процессами. Ледяная поверхность Европы подвергается воздействию солнечного света и бомбардируется пылью и заряженными частицами интенсивного магнитного поля Юпитера. Комбинируясь, эти процессы заставляют замерзший водяной лед на поверхности испаряться, как и газовые фрагменты молекул воды. После образования газовых молекул они проходят ряд химических реакций, в результате которых появляется молекулярный водород и кислород. Относительно легкий водород улетучивается в пространство, а тяжелые молекулы кислорода аккумулируются, образуя атмосферу, протянувшуюся на 200 км над поверхностью. Газ медленно улетучивается в пространство и должен постоянно пополняться.

    До недавнего времени среди всех открытых естественных спутников планет были известны только 3 спутника, имеющие атмосферы. Это Ио с атмосферой, состоящей из диоксида серы, а также Титан и Тритон с азотно-метановыми атмосферами. Атмосфера Ио была обнаружена в 1973 году. Эта необычная атмосфера образована диоксидом серы, выбрасываемым из вулканов. Ионосфера Ио простирается на значительное расстояние от поверхности спутника. Как уже сказано, на Европе обнаружена атмосфера, содержащая молекулярный кислород. В настоящее время ученые изучают Ганимед и Каллисто на предмет присутствия у них атмосферы и ионосферы. Сильно разреженная атмосфера уже обнаружена на Каллисто.

    Орбита, теория движения

    Орбита Европы является резонансной из-за соизмеримости средних движений Ио, Европы и Ганимеда в соотношении 1: 2: 4. Основные параметры ее орбиты представлены в таблице:

    В настоящее время наилучшей теорией движения галилеевых спутников Юпитера является теория Лиске . Наиболее полную картину движения галилеевых спутников представил Феррас-Мелло в монографии "Динамика галилеевых спутников Юпитера" . Используя классический метод возмущений, он получил все основные неравенства в их движении. С количественной точки зрения самыми интересными элементами являются константы интегрирования и главные неравенства в движении спутников. Всего теория их движения содержит более тридцати физических параметров и констант интегрирования, которые должны быть определены из наблюдений. Это элементы орбит всех четырех спутников, два параметра движения полюса Юпитера и несколько физических параметров, характеризующих возмущающие силы.

    Вращение

    Европа, также как и все галилеевы спутники, находится в синхронном вращении с Юпитером, т.е.период обращения вокруг Юпитера совпадает с периодом вращения спутника вокруг оси. Рекомендуемые величины для направления на северный полюс вращения и первый меридиан спутников Юпитера (1994, IAUWG) .

    Прямое восхождение и склонение являются стандартными экваториальными координатами на экваторе J2000 на эпоху J2000.

    Координаты северного полюса неизменной плоскости = 273°.85, = 66°.99.
    Т - интервал в юлианских столетиях (по 36525 дней) от стандартной эпохи,
    d - интервал в днях от стандартной эпохи,
    Стандартная эпоха 1.5 января 2000, т.е. 2451545.0 TDB

    где
    J4 = 355.°80 + 1191.°3 T ,
    J5 = 119.°90 + 262.°1 T ,
    J6 = 229.°80 + 64.°3 T ,
    J7 = 352.°25 + 2382.°6 T ,
    J8 = 113.°35 + 6070.°0 T .

    На днях ученые сообщили, что на Европе, спутнике Юпитера, есть водяные гейзеры, бьющие из-под поверхности в районе южного полюса. Раз так, на Европе велики шансы найти жизнь - ведь под ледяной поверхностью спутника скрываются огромные водные океаны, а благодаря гейзерам до них будет гораздо легче добраться. Но Европа - не единственное место в Солнечной системе, где ученые надеются найти жизнь. Я расскажу про некоторые из них.

    Европа - спутник Юпитера. Поверхность Европы покрыта льдом, а подо льдом, как выясняется, скрываются огромные водные океаны. Несмотря на то, что радиус Европы в 4 раза меньше земного, жидкой воды здесь может быть в два раза больше, чем на нашей планете. Глубина океанов на Европе может достигать 100 километров, в то время как самое глубокое место на Земле - Марианская впадина, и ее глубина “всего лишь” 11 километров.

    Новость про гейзеры делает этот спутник привлекательным местом для изучения и для поисков жизни. Ведь там, где есть жидкая вода, вполне может быть и жизнь! По крайней мере, именно в таких местах ее стоит искать в первую очередь. И гейзеры могут в этом сильно помочь - ведь можно взять пробы воды, даже не садясь на поверхность спутника, а просто пролетев сквозь струи вещества, вырывающиеся из гейзеров.

    Поверхность Энцелада, спутника Сатурна, тоже скована льдом. Интересно, что в некоторых областях на его поверхности довольно много метеоритных кратеров, а в других местах их почти нет. Это не значит, что метеориты падали на Энцелад неравномерно - просто те области, где кратеров мало, гораздо моложе; на поверхности спутника происходят процессы, которые постоянно меняют его внешний вид. Оказывается, в районе южного полюса Энцелада из-под поверхности вырываются мощные струи водяного пара. Высота их достигает нескольких сотен километров! Вода очень быстро замерзает - получается снег, часть которого улетает в космическое пространство, а часть оседает на поверхность спутника. Сейчас считается, что под ледяной коркой на Энцеладе находятся водные океаны.

    Из-за того, что орбита спутника немного вытянута и он оказывается то чуть ближе к Сатурну, то чуть дальше от него, спутник постоянно слегка меняет свою форму, и при этом разогревается. Если вы возьмете в руки кусочек пластилина и начнете его мять, то почувствуете, как он немного нагревается - примерно то же самое происходит и с Энцеладом. Именно поэтому, несмотря на то, что поверхность его скована льдом, на глубине могут быть водные океаны.

    Куда лететь в поисках инопланетных живых существ? На Европе гейзеры действуют не постоянно, но зато она гораздо ближе к нам, чем Энцелад. А еще ближе - Марс. И ученые тоже очень надеются найти здесь жизнь. На первый взгляд, Марс - не слишком гостеприимная планета. Там почти нет атмосферы, нет магнитного поля - такого невидимого “зонтика”, который защищал бы планету от вредного космического излучения. Правда, на Марсе нашли воду, но на поверхности она находится в виде льда (что, конечно, не очень хорошо для жизни). Когда-то давным-давно на Марсе были огромные водные океаны, как и на Земле, и вполне может быть, что были очень подходящие условия для зарождения и развития жизни. Но постепенно магнитное поле становилось слабее, климат стал сильно меняться, и сейчас жидкой воды на поверхности Марса уже не найти (если она и появляется - то очень-очень быстро испаряется).

    Но если когда-то на Марсе была жизнь, то она могла бы сохраниться в почве под поверхностью планеты. На глубине нескольких метров уже не будет чувствоваться влияние космического излучения, и, кроме того, там уже может быть и жидкая вода. На прошлой неделе ученые, работающие с марсоходом Curiosity сообщили, что кратер Gale, по которому робот сейчас ползает, в прошлом скорее всего был местом расположения пресноводного озера, и в этом озере были полноценные условия для жизни.Особенно интересно было бы заглянуть в марсианские пещеры. На поверхности Марса встречаются вертикальные провалы - на Земле есть похожие места, которые являются входами в пещеры, образованные при вымывании земных пород водой. В марсианских провалах пока что не побывал ни один аппарат, так что сейчас мы можем только гадать, что же находится внутри? Возможно, там действительно есть вода или даже жизнь.

    Хотя ученые считают, что на других планетах и спутниках Солнечной системы тоже может быть жизнь, не стоит надеяться найти там настоящих марсиан, каких-нибудь существ, похожих на нас, на наших кошек, птиц, или рыб - всего того, что мы привыкли видеть вокруг себя. Скорее всего, для того чтобы разглядеть внеземную жизнь, нам придется заглянуть в микроскоп. Помимо достаточно сложной жизни (вроде нас с вами) на Земле обитают очень маленькие существа, которых, как правило, невозможно разглядеть невооруженным глазом. Некоторые такие микроорганизмы прекрасно себя чувствуют в условиях, которые для нас были бы просто невыносимы - например, при температуре выше 100 градусов, или, наоборот, в экстремально холодных местах. Ученые считают, что некоторые земные бактерии могли бы выжить и вне Земли - например, на том же Марсе, или в подледных океанах спутников. А если еще где-то в нашей Солнечной системе удастся обнаружить хотя бы простейшие микроорганизмы, это будет значить, что жизнь - не такая уж редкость в нашей Вселенной!

    Европа, спутник Юпитера, относящийся к галилеевым, расположен сразу после Ио. Однако это среди галилеевых спутников он второй, а среди всех известных спутников Юпитера он имеет шестой номер по удаленности от планеты. Как и прочие галилеевы спутники, Европа – уникальный мир, практически не похожий на все остальные. Мало того, возможно, что там имеется и жизнь!

    • Этот спутник лишь немного меньше Луны – его диаметр около 3000 км, против лунных 3400 км. Среди галилеевых спутников Европа самая маленькая – Ио, и Каллисто гораздо больше. По размеру Европа занимает 6-е место среди всех спутников Солнечной системы, однако, если свалить в кучу все прочие, более мелкие спутники, то Европа будет иметь большую массу.
    • Европа состоит из силикатных пород, как и , а внутри имеется металлическое ядро. При вращении по орбите этот спутник Юпитера, как и прочие крупные спутники, всегда повернут к планете одной стороной.
    • Верхний слой Европы, как предполагают ученые, и тому получено множество свидетельств, состоит из воды. То есть там имеется огромный океан из соленой воды, состав которой вполне схож с составом земной морской воды. А поверхность этого океана представляет собой ледяную кору толщиной 10-30 км – её мы и можем наблюдать.
    • Есть свидетельства, что внутренняя часть Европы и её кора вращаются с разной скоростью, причем кора немного быстрее. Это проскальзывание происходит из-за того, что под корой находится толстый слой воды, и она никак не сцеплена с силикатными породами на дне подледного океана.
    • На Европе совсем нет кратеров, гор, и прочих деталей ландшафта, которые мы бы ожидали здесь увидеть. Поверхность практически ровная, и Европа больше похожа на голый, ровный шар. Единственное, что там есть – трещины и разломы в ледяной поверхности.

    Поверхность Европы

    Если бы мы оказались на поверхности этого спутника Юпитера, то нашему глазу почти не за что было бы зацепиться. Мы бы увидели лишь сплошную ледяную поверхность, с очень редкими холмами высотой несколько сот метров, да трещинами, пересекающие её в разных направлениях. Лишь около 30 небольших кратеров имеется на всей поверхности, да встречаются области с обломками и ледяными хребтами. Но есть также и огромные, идеально ровные области недавно растекшейся и застывшей воды.


    Детальных снимков Европы на небольшом расстоянии до сих пор не получено, хотя планируются облеты этого спутника аппаратом JUICE на высоте до 500 км, но случится это лишь в 2030 году. До сих пор наилучшие снимки получены аппаратом «Галилео» в 1997 году, но разрешение их не очень хорошее.

    Европа обладает высоким альбедо – отражающей способностью, что говорит о сравнительной молодости льда. Это и неудивительно – Юпитера оказывает мощное приливное воздействие, из-за чего поверхность трескается и на нее выливается огромное количество воды. Европа – геологически активное тело, однако заметить какие-то изменения на ней не удается даже за десятилетия наблюдений.

    Однако, находясь на поверхности, мы испытаем невероятный холод – там порядка 150-190 градусов ниже нуля. Кроме того, спутник находится в радиационном поясе Юпитера, и доза радиации, в миллион раз превышающая земную, нас просто убьет.

    Подповерхностный океан и жизнь на Европе

    Хотя Европа намного меньше Земли, и даже немного меньше Луны, однако океан под её ледяным панцирем поистине огромен – запасов воды в нём может быть вдвое больше, чем во всех земных океанах! Глубина этого подповерхностного океана может достигать 100 км.


    Водяной лед на поверхности подвергается действию космической радиации и солнечного ультрафиолета. Из-за этого вода распадается на водород и кислород. Водород, как более легкий газ, улетучивается в космос, а кислород образует тонкую и очень разреженную атмосферу. Мало того, этот кислород может проникать и в воду, благодаря трещинам и перемешиванию льда, и постепенно насыщать её. Хотя этот процесс и медленный, но за миллионы лет, и благодаря большой поверхности, вода в океане Европы вполне могла насытиться кислородом до уровня его концентрации в земной морской воде. Расчеты это также подтверждают.

    Мало того, исследования также говорят и в пользу того, что концентрация солей в воде также скорее всего близка к земной морской воде. Температура же её такова, что вода не замерзает, то есть вполне комфортна для живых организмов даже по земным меркам.

    В итоге, имеем любопытную и парадоксальную ситуацию – возможность найти жизнь, пусть и микроскопическую, там, где никто её не ожидал встретить. Ведь условия в океане Европы должны быть практически схожими с теми, какие имеются в глубоководных местах земных океанов, а там тоже имеется жизнь. Например, земные экстремофилы вполне хорошо себя чувствуют в таких условиях.

    На Европе может иметься собственная экосистема, и при попытках её изучения есть риск нарушить её, занеся туда земные микроорганизмы. Поэтому, когда аппарат «Галилео» выполнил свою миссию, его направили в атмосферу Юпитера где он благополучно сгорел, не оставив после себя ничего, что могло бы случайно попасть на Европу или другие спутники.

    Будущие исследования спутника Юпитера Европы

    В связи с возможностью наличия жизни на Европе, этот спутник занимает в планах ученых далеко не последнее место. Напротив, его изучение в этом плане стоит в списке приоритетных задач. Однако все не так просто.

    На пути исследователей не только огромные расстояния – космические зонды давно научились их преодолевать. Но настоящее препятствие – ледяная кора Европы, толщиной 10 км и более. Разрабатываются разные варианты её преодоления, есть и вполне осуществимые.

    Следующий полет к Юпитеру совершит европейский аппарат Jupiter Icy Moon Explorer, стар которого планируется в 2020 году. Он посетит Европу, Ганимед и Каллисто. Возможно, он даст много ценной информации, которая облегчит проникновение в океан Европы в следующих экспедициях.

    Наблюдение спутника Юпитера Европа

    Конечно, в имеющиеся у любителей астрономии телескопы рассмотреть какие-то подробности на спутниках Юпитера не получится. Однако можно наблюдать, например, прохождение спутников и их теней по диску планеты – это довольно любопытное явление.

    Увидеть все четыре галилеевых спутника можно уже в 8-10-кратный бинокль. В телескоп, даже очень небольшой, их можно видеть очень отчетливо, конечно, в виде звезд. В более мощные телескопы можно различить их оттенок, например, Ио имеет желтоватый цвет из-за обилия серы.

    Больше об этом уникальном спутнике Юпитера можно узнать из фильма National Geographic «Путешествие на Европу».