• Причина возникновения поверхностная энергия жидкости. Поверхностная энергия жидкостей. Особенности жидкого состояния вещества

    Суммарная энергия частиц жидкости складывается из энергии их хаотического (теплового) движения и потенциальной энергии, обусловленной силами межмолекуляр­ного взаимодействия. Для перемещения молекулы из глубины жидкости в поверхност­ный слой надо затратить работу. Эта работа совершается за счет кинетической энергии молекул и идет на увеличение их потенциальной энергии. Поэтому молекулы поверхностного слоя жидкости обладают большей потенциальной энергией, чем молекулы внутри жидкости. Эта дополнительная энергия, которой обладают молекулы в поверхностном слое жидкости, называемая поверхностной энергией, пропорциональна площади слоя DS :

    где s - поверхностное натяжение.

    Так как равновесное состояние характеризуется минимумом потенциальной энер­гии, то жидкость при отсутствии внешних сил будет принимать такую форму, чтобы при заданном объеме она имела минимальную поверхность, т. е. форму шара. Наблю­дая мельчайшие капельки, взвешенные в воздухе, можем видеть, что они действительно имеют форму шариков, но несколько искаженную из-за действия сил земного тяготения.

    Итак, условием устойчивого равновесия жидкости является минимум поверхност­ной энергии. Это означает, что жидкость при заданном объеме должна иметь наимень­шую площадь поверхности, т. е. жидкость стремится сократить площадь свободной поверхности. В этом случае поверхностный слой жидкости можно уподобить растяну­той упругой пленке, в которой действуют силы натяжения.

    Под действием сил поверхностного натяжения (направлены по касательной к поверх­ности жидкости и перпендикулярно участку контура, на который они действуют) поверхность жидкости сократилась и рассматриваемый контур переместился в положение, отмеченное светло-серым цветом. Силы, действующие со стороны выделенного участка на граничащие с ним участки, совершают работу

    где f - сила поверхностного натяжения, действующая на единицу длины контура поверхности жидкости.

    Из рис. 97 видно, что DlDx = DS , т. е.

    Эта работа совершается за счет уменьшения поверхностной энергии, т. е.

    Из сравнения выражений (66.1) - (66.3) видно, что

    т. е. поверхностное натяжение s равно силе поверхностного натяжения, приходящейся на единицу длины контура, ограничивающего поверхность. Единица поверхностного натяжения - ньютон на метр (Н/м) или джоуль на квадратный метр (Дж/м 2) (см. (66.4) и (бб.1)). Большинство жидкостей при температуре 300 К имеет поверхностное натяжение порядка 10 –2 -10 –1 Н/м. Поверхностное натяжение с повышением тем­пературы уменьшается, так как увеличиваются средние расстояния между молекулами жидкости.

    Поверхностное натяжение существенным образом зависит от примесей, имеющихся в жидкостях. Вещества, ослабляющие поверхностное натяжение жидкости, называются пoвеpxностно-активными . Наиболее известным поверхностно-активным веществом по отношению х воде является мыло. Оно сильно уменьшает ее поверхностное натяжение (примерно с 7,5 10 –2 до 4,5 10 –2 Н/м). Поверхностно-активными веществами, пони­жающими поверхностное натяжение воды, являются также спирты, эфиры, нефть и др.

    Существуют вещества (сахар, соль), которые увеличивают поверхностное натяжение жидкости благодаря тому, что их молекулы взаимодействуют с молекулами жидкости сильнее, чем молекулы жидкости между собой. Например, если посолить мыльный раствор, то в поверхностный слой жидкости выталкивается молекул мыла больше, чем в пресной воде.

    Лекция 11.Характеристика жидкого состояния вещества. Поверхностный слой жидкости. Энергия поверхностного слоя. Явления на границе жидкости с твердым телом. Капиллярные явления.

    ХАРАКТЕРИСТИКА ЖИДКОГО СОСТОЯНИЯ ВЕЩЕСТВА

    Жидкость - это агрегатное состояние вещества, промежуточное между газообразным и твердым.

    Вещество в жидком состоянии сохраняет свой объем, но принимает форму сосуда, в котором оно находится Сохранение объема у жидкости доказывает, что между ее молекулами действуют силы притяжения.

    Если вокруг молекулы жидкости описать сферу молекулярного действия, то внутри этой сферы окажутся центры многих других молекул, которые будут взаимодействовать с нашей молекулой. Эти силы взаимодействия удерживают молекулу жидкости около ее временного положения равновесия примерно в течение 10 -12 -10 -10 с, после чего она перескакивает в новое временное положение равновесия приблизительно на расстояние своего диаметра. Молекулы жидкости между перескоками совершают колебательное движение около временного положения равновесия.

    Время между двумя перескоками молекулы из одного положения в другое называется временем оседлой жизни.

    Это время зависит от вида жидкости и от температуры. При нагревании жидкости среднее время оседлой жизни молекул уменьшается.

    Итак, в небольшом объеме жидкости наблюдается упорядоченное расположение ее молекул, а в большом объеме оно оказывается хаотическим. В этом смысле говорят, что в жидкости существует ближний порядок в расположении молекул и отсутствует дальний порядок. Такое строение жидкости называют квазикристаллическим (кристаллоподобным).

    СВОЙСТВА ЖИДКОСТИ

    1.Если время действия силы на жидкость мало, то жидкость проявляет упругие свойства. Например, при резком ударе палкой о поверхность воды палка может вылететь из руки или сломаться; камень можно бросить так, что он при ударе о по­верхность воды отскакивает от нее, и лишь совершив несколько скачков, тонет в воде.

    2. Если же время воздействия на жидкость велико, то вместо упругости проявляется текучесть жидкости. Например, рука легко проникает внутрь воды.

    3. При кратковременном действии силы на струю жидкости последняя обнаруживает хрупкость. Прочность жидкости нд разрыв хотя и меньше, чем у твердых веществ, но мало уступает им по величине. Для воды она составляет 2,5-10 7 Н/м 2 .

    4.Сжимаемость жидкости тоже очень мала, хотя она и больше, чем у этих же веществ в твердом состоянии. Например, при увеличении давления на 1 атм объем воды уменьшается на 50 миллионных долей.

    Разрывы внутри жидкости, в которой нет посторонних веществ, например воздуха, могут получаться только при интенсивном воздействии на жидкость, например при вращении гребных винтов в воде, при распространении в жидкости ультразвуковых волн. Такого рода пустоты внутри жидкости долго существовать не могут и резко захлопываются, т. е. исчезают. Это явление называют кавитацией (от греческого «кавитас» – полость). Оно служит причиной быстрого износа гребных винтов.


    ПОВЕРХНОСТНЫЙ СЛОЙ ЖИДКОСТИ

    Среднее значение равнодействующей молекулярных сил притя­жения, приложенных к молекуле, которая находится внутри жидкости (рис. 2), близко к нулю. Случайные флуктуации этой равнодействующей заставляют молекулу совершать лишь хаотическое движение внутри жидкости. Несколько иначе обстоит дело с молекулами, находящимися в поверхностном слое жидкости.

    Опишем вокруг молекул сферы молекулярного действия радиусом R(порядка 10 -8 м). Тогда для верхней молекулы в нижней полусфере окажется много молекул, а в верхней – значительно меньше, так как снизу находится жидкость, а сверху – пар и воздух. Поэтому для верхней молекулы равнодействующая молекулярных сил притяжения в нижней полусфере много больше равнодействующей молекулярных сил в верхней полусфере.

    Таким образом, все молекулы жидкости, находящиеся в поверхностном слое толщиной, равной радиусу молекулярного действия, втягиваются внутрь жидкости. Но пространство внутри жидкости занято другими молекулами, поэтому поверхностный слой создает давление на жидкость, которое называют молекулярным давлением.

    Силы, действующие в горизонтальной плоскости, стягивают поверхность жидкости. Они называются силами поверхностного натяжения

    Поверхностное натяжение - физическая величина, равная отношению силы F поверхностного натяжения, приложенной к границе поверхностного слоя жидкости и направленной по касательной к поверхности, к длине l этой границы:


    Единица поверхностного натяжения – ньютон на метр (Н/м).

    Поверхностное натяжение различно для разных жидкостей и зависит от температуры.

    Обычно поверхностное натяжение уменьшается с возрастанием температуры и при критической температуре, когда плотность жидкости и пара одинаковы, поверхностное натяжение жидкости равно нулю.

    Вещества, которые уменьшают поверхностное натяжение, называют поврхностно – активными (спирт, мыло, стиральный порошок)

    Чтобы увеличить площадь поверхности жидкости требуется выполнить работу против поверхностного натяжения.

    Имеется другое определение коэффициента поверхностного натяжения - энергетическое. Оно исходит из того, что если площадь поверхности жидкости увеличивается, то некоторое количество молекул из ее объема поднимается на слой поверхности. С этой целью внешние силы совершают работу против молекулярных сил сцепления молекул. Величина данной работы будет пропорциональна изменению площади поверхности жидкости:

    Коэффициент пропорциональности σ и называется поверхностным натяжением жидкости.

    Выведем единицу поверхностного, натяжения а в СИ: о=1 Дж/1 м 2 = 1 Дж/м 2 .

    Особенности жидкого состояния вещества

    Свойства жидкостей

    Как известно, вещество в жидком состоянии сохраняет свой объем, но принимает форму сосуда, в котором оно находится. Сохранение объема жидкости объясняется наличием сил притяжения между молекулами. Эти силы межмолекулярного взаимодействия удерживают молекулу жидкости около её временного положения равновесия примерно в течение с, после чего она перескакивает в новое временное положение равновесия приблизительно на расстоянии своего диаметра. Время между двумя перескоками молекулы из одного положения равновесия в другое называется временем оседлой жизни . Это время зависит от вида жидкости и температуры. При нагревании среднее время оседлой жизни уменьшается. Благодаря возможности довольно свободного перемещения молекул относительно друг друга жидкости обладают текучестью, поэтому они не имеют постоянной формы, а принимают форму сосуда.

    Если выделить в жидкости очень малый объем, то в течение времени оседлой жизни в нем существует упорядоченное расположение молекул, как бы зародыш кристаллической решетки. Затем это расположение распадается, но возникает в другом месте. Поэтому принято говорить, что в жидкости существует ближний порядок в расположении молекул , но отсутствует дальний порядок.

    Жидкости проявляют ряд механических свойств, сближающих их в большей мере с твердыми телами, чем с газами. К ним можно отнести упругость (при кратковременном воздействии), хрупкость (т.е. способность к разрыву), низкая сжимаемость. Еще одно существенное отличие от газов: в газах кинетическая энергия молекул значительно больше их потенциальной энергии, тогда как в жидкостях потенциальная и кинетическая энергии примерно равны.

    На поверхности жидкости, вблизи границы, разделяющей жидкость и ее пар, взаимодействие между молекулами жидкости отличается от взаимодействия молекул внутри объема жидкости. Для иллюстрации этого утверждения рассмотрим рис. 20 . Молекула 1, окруженная со всех сторон другими молекулами той же жидкости испытывает в среднем одинаковые притяжения ко всем своим соседям. Равнодействующая этих сил близка к нулю. Молекула 2 испытывает меньшее притяжение вверх со стороны молекул пара и большее притяжение вниз со стороны молекул жидкости. В результате на молекулы, расположенные в поверхностном слое действует направленная вниз равнодействующая R сил, которую принято относить к единице площади поверхностного слоя.

    Для перенесения молекул из глубины жидкости в ее поверхностный слой необходимо совершить работу по преодолению силы R . Эта работа идет на увеличение поверхностной энергии , т.е. избыточной потенциальной энергии, которой обладают молекулы в поверхностном слое по сравнению с их потенциальной энергией внутри остального объема жидкости.



    Обозначим потенциальную энергию одной молекулы в поверхностном слое, - потенциальную энергию молекулы в объеме жидкости, число молекул в поверхностном слое жидкости. Тогда поверхностная энергия равна

    Коэффициентом поверхностного натяжения (или просто поверхностным натяжением ) жидкости называют изменение поверхностной энергии при изотермическом увеличении площади поверхности на одну единицу:

    где – число молекул на единице площади поверхности жидкости.

    Если поверхность жидкости ограничена периметром смачивания, то коэффициент поверхностного натяжения численно равен силе, действующей на единицу длины периметра смачивания и направленной перпендикулярно к этому периметру:

    где – длина периметра смачивания, сила поверхностного натяжения, действующая на длине периметра смачивания. Сила поверхностного натяжения лежит в плоскости, касательной к поверхности жидкости.

    Сокращение площади поверхности жидкости уменьшает поверхностную энергию. Условием устойчивого равновесия жидкости, как и любого тела, является минимум потенциальной поверхностной энергии. Это значит, что в отсутствие внешних сил жидкость должна иметь при заданном объеме наименьшую площадь поверхности. Такой поверхностью является сферическая поверхность.

    С повышением температуры жидкости и приближением ее к критической коэффициент поверхностного натяжения стремится к нулю. Вдали от коэффициент s линейно убывает при возрастании температуры. Для уменьшения поверхностного натяжения жидкости к ней добавляют специальные примеси (поверхностно-активные вещества), которые располагаются на поверхности и уменьшают поверхностную энергию. К ним относятся мыло и другие моющие средства, жирные кислоты и т.п.

    Знаете ли Вы, в чем ложность понятия "физический вакуум"?

    Физический вакуум - понятие релятивистской квантовой физики, под ним там понимают низшее (основное) энергетическое состояние квантованного поля, обладающее нулевыми импульсом, моментом импульса и другими квантовыми числами. Физическим вакуумом релятивистские теоретики называют полностью лишённое вещества пространство, заполненное неизмеряемым, а значит, лишь воображаемым полем. Такое состояние по мнению релятивистов не является абсолютной пустотой, но пространством, заполненным некими фантомными (виртуальными) частицами. Релятивистская квантовая теория поля утверждает, что, в согласии с принципом неопределённости Гейзенберга, в физическом вакууме постоянно рождаются и исчезают виртуальные, то есть кажущиеся (кому кажущиеся?), частицы: происходят так называемые нулевые колебания полей. Виртуальные частицы физического вакуума, а следовательно, он сам, по определению не имеют системы отсчета, так как в противном случае нарушался бы принцип относительности Эйнштейна, на котором основывается теория относительности (то есть стала бы возможной абсолютная система измерения с отсчетом от частиц физического вакуума, что в свою очередь однозначно опровергло бы принцип относительности, на котором постороена СТО). Таким образом, физический вакуум и его частицы не есть элементы физического мира, но лишь элементы теории относительности, которые существуют не в реальном мире, но лишь в релятивистских формулах, нарушая при этом принцип причинности (возникают и исчезают беспричинно), принцип объективности (виртуальные частицы можно считать в зависимсоти от желания теоретика либо существующими, либо не существующими), принцип фактической измеримости (не наблюдаемы, не имеют своей ИСО).

    Когда тот или иной физик использует понятие "физический вакуум", он либо не понимает абсурдности этого термина, либо лукавит, являясь скрытым или явным приверженцем релятивистской идеологии.

    Понять абсурдность этого понятия легче всего обратившись к истокам его возникновения. Рождено оно было Полем Дираком в 1930-х, когда стало ясно, что отрицание эфира в чистом виде, как это делал великий математик, но посредственный физик , уже нельзя. Слишком много фактов противоречит этому.

    Для защиты релятивизма Поль Дирак ввел афизическое и алогичное понятие отрицательной энергии, а затем и существование "моря" двух компенсирующих друг друга энергий в вакууме - положительной и отрицательной, а также "моря" компенсирующих друг друга частиц - виртуальных (то есть кажущихся) электронов и позитронов в вакууме.

    Твердые тела и жидкости обладают поверхностями раздела с соседними фазами. Состояние молекул вещества в объеме фазы и в поверхностном слое не одинаково. Основное отличие состоит в том, что поверхностный слой молекул твердого тела или жидкости обладает избытком энергии Гиббса в сравнении с молекулами объемной фазы. Наличие поверхностной энергии Гиббса обусловлено неполной компенсированностью межмолекулярных сил притяжения у молекул поверхностного слоя вследствие их слабого взаимодействия с граничащей фазой.

    Рассмотрим действие молекулярных сил на молекулу в глубине и на поверхности жидкости на примере двухфазной системы жидкость-воздух (рис.1)

    силы разного значения, так как суммарные силы притяжения единицы объема жидкости много больше, чем единицы объема воздуха.

    Равнодействующая Р сил у молекулы Б направлена вниз перпендикулярно поверхности жидкости. Под влиянием таких некомпенсированных сил находятся все молекулы поверхностного слоя жидкости.

    Следовательно, потенциальная энергия молекул на поверхности раздела фаз выше, чем у молекул внутри фазы. Эти отличая в энергетическом состоянии всех молекул поверхностного слоя характеризуются свободной поверхностной энергией G s .

    Свободной поверхностной энергией называется термодинамическая функция, характеризующая энергия межмолекулярного взаимодействия частиц на поверхности раздела фаз с частицами каждой из контактирующих фаз. Свободная поверхностная энергия зависит от количества частиц на поверхности раздела, а потому прямо пропорциональна площади раздела фаз и удельной энергии межфазного взаимодействия:

    где σ – поверхностное натяжение или удельная свободная поверхностная энергия, которая характеризует энергию межфазного взаимодействия единицы площади поверхности раздела фаз; S-площадь поверхности раздела фаз.

    Из уравнения (1) следует:

    Поверхностное натяжение σ является важной характеристикой любой жидкости. Физический смысл поверхностного натяжения может иметь энергетическое и силовое выражение.

    Согласно энергетическому выражению, поверхностное натяжение есть поверхностная энергия Гиббса единицы поверхности. В таком случае σ равна работе, затраченной на образование единицы поверхности. Энергетической единицей σ является .

    Силовое определение поверхностного натяжения формулируется следующим образом: σ – это сила, действующая на поверхности по касательной к ней и стремящаяся сократить свободную поверхность тела до наименьших возможных пределов при данном объеме. В этом случае единицей измерения σ является .

    В гетерогенных системах поверхность раздела, приходящаяся на единицу массы, очень мала. Поэтому величиной поверхностной энергии Гиббса G s можно пренебречь.

    Согласно второму закону термодинамики, энергия Гиббса системы самопроизвольно стремится к минимуму. У индивидуальных жидкостей уменьшение поверхностной энергии Гиббса осуществляется в основном за счет сокращения поверхности (слияние мелких капель в более крупные, шарообразная форма капель жидкости, находящихся во взвешенном состоянии). В растворах уменьшение поверхностной энергии Гиббса может происходить также за счет изменения концентрации компонентов в поверхностном слое.

    Поверхностная энергия и поверхностное натяжение зависят от температуры, природы граничащих сред, природы и концентрации растворенных веществ.

    Адсорбция, ее основные понятия и виды

    Адсорбцией называют концентрирование (сгущение) веществ на поверхности раздела фаз. Вещество, которое адсорбирует другое вещество, называют адсорбентом (рис. 2). Название адсорбируемого вещества зависит от его положения по отношению к адсорбенту. Если вещество находится в объеме и может адсорбироваться (его химический потенциал равен μ V , а концентрация с), то его называют адсорбтивом . Это же вещество в адсорбированном состоянии (его химический потенциал уже становится равным μ B , а концентрация – с В) будет называться адсорбатом. Иными словами, для обозначения положения адсорбируемого вещества используют термины адсорбтив (до адсорбции) и адсорбат (после адсорбции).

    жидкости или газа (см. рис.2). Часть молекул с поверхности может перейти обратно в объем. Процесс, обратный адсорбции, называют десорбцией .

    В зависимости от агрегатного состояния адсорбента и адсорбтива различают адсорбцию на границе твердого тела и газа (Т-Г), жидкости и газа (Ж-Г) и твердого тела и жидкости (Т-Ж).

    Рассмотрим в качестве примера некоторые адсорбционные процессы.

    Активированный уголь обладает значительной пористостью и повышенной адсорбционной способностью, хорошо адсорбирует летучие вещества. Входящие в состав молока жиры и белки адсорбируются на границе раздела водная среда-воздух и снижают поверхностное натяжение воды с 73 до 45-60 мДж/м 2 . Очистку растительных масел от красящих веществ, так называемый процесс отбеливания, осуществляют с помощью бентонитовых глин, выполняющих роль адсорбента. На основе адсорбции проводят очистку и осветление жидкости.

    Адсорбция газов на угле происходит на границе Т-Г, жиров и белков – на границе Ж-Г, а красящих веществ на бентоните – по границе двух конденсированных тел Т-Ж. Причем в первом случае адсорбируются молекулы газа или паров на твердой поверхности, а во втором и третьем случае в качестве адсорбата выступает растворенное в жидкости вещество. В ходе всех этих процессов происходит концентрирование веществ на поверхности раздела фаз.

    Избыток адсорбата в поверхностном слое по сравнению с его поверхностным количеством в этом слое характеризует избыточную , или так называемую гиббсовскую адсорбцию (Г). Она показывает на сколько увеличилась концентрация адсорбата в результате адсорбции:

    где N-количество адсорбата в адсорбционном слое, когда его концентрация на поверхности соответсвует концентрации в объемной фазе.

    Когда концентрация адсорбата на поверхности адсорбента значительно превышает его концентрацию в объеме, т.е. с В >>с, то величиной N можно пренебречь и считать, что

    В случае адсорбции на границе раздела жидкость-газ и адсорбции на твердых гладких поверхностях величины Г и А определяют относительно единицы площади границы раздела фаз, т.е. размерность Г и А будет моль/м 2 .

    Для твердого и особенно пористого порошкообразного адсорбента, имеющего значительную границу раздела фаз, адсорбцию выражают по отношению к единице массы адсорбента, т.е. в этом случае величины Г и А имеют размерность моль/кг.

    Таким образом, величина адсорбции для i-го компонента

    где n i – избыточное число молей адсорбата i-го компонента на поверхности по сравнению с его содержанием в объеме; В – площадь поверхности раздела фаз, м 2 ; m – масса пористого порошкообразного адсорбента, кг.

    В случае адсорбции одного компонента уравнения упрощаются:

    (6)

    Адсорбция на границе раздела жидкость-газ, жидкость-жидкость.
    Уравнение адсорбции Гиббса

    При растворении в воде поверхностно-активные вещества (ПАВ) накапливаются в поверхностном слое; поверхностно-инактивные вещества (ПИВ), наоборот, концентрируются в объеме раствора. И в том, и в другом случае распределение вещества между поверхностным слоем и внутренним объемом подчиняется принципу минимума энергии Гиббса: на поверхности оказывается то вещество, которое обеспечивает наименьшее поверхностное натяжение, возможное при данных условиях. В первом случае это молекулы ПАВ, во втором – молекулы растворителя (воды). Происходит адсорбция.

    Разность концентраций в поверхностном слое и объеме раствора приводит к возникновению сил осмотического давления и процессу диффузии, стремящемуся выравнить концентрации по всему объему.

    Когда уменьшение поверхностной энергии, связанное с обеднением или обогащением поверхностного слоя растворенным веществом, будет уравновешено противодействующими силами осмотического давления (или когда химические потенциалы растворенного вещества и растворителя в поверхностном слое будут равны их химическим потенциалам в объеме раствора). В системе наступит подвижное равновесие, которое характеризуется определенной разностью концентраций между поверхностным слоем и объемом раствора.

    Избыток или недостаток растворенного вещества в поверхностном слое, отнесенный к единице поверхности. Обозначают через Г, называют гиббсовской адсорбцией и выражают в моль/м 2 , кг/м 2 и т.п.

    В тех случаях, когда концентрация адсорбтива в поверхностном слое больше, чем в объеме раствора, Г>0 – адсорбция положительна. Это характерно для растворов ПАВ. При недостатке вещества в поверхностном слое Г<0 – адсорбция отрицательна, что имеет место для растворов ПИВ.

    Таким образом, положительной адсорбцией называют адсорбцию, сопровождающуюся накоплением растворенных веществ в поверхностном слое. Отрицательной называют адсорбцию, сопровождающуюся вытеснением растворенного вещества из поверхностного слоя внутрь среды.

    Практическое значение имеет только положительная адсорбция, поэтому под термином “адсорбция” имеют в виду именно этот случай.


    Изотерма адсорбции для жидких поверхностей раздела, т.е. для систем жидкость – газ и жидкость – жидкость, как правило, имеет вид, приведенный на рисунке 3.

    Рис 3 Изотерма адсорбции

    Наибольшее и постоянное значение адсорбции Г или А, при котором достигается насыщение адсорбционного слоя и адсорбция уже не зависит от концентрации, называют предельной адсорбцией Г ПР (А ПР).

    Пределом положительной адсорбции служит полное насыщение поверхностного слоя молекулами растворенного вещества. Процесс насыщения моно слоя тормозится тепловым движением, которое увлекает часть молекул адсорбированного вещества из поверхностного слоя внутрь раствора. С понижением температуры тепловое движение ослабевает и поверхностный избыток при той же концентрации с раствора увеличивается.

    Предел, к которому стремится отрицательная адсорбция – это полное вытеснение растворенного вещества молекулами растворителя из поверхностного слоя.

    Простых и доступных способов прямого определения избытка растворенного вещества в адсорбционном слое на подвижных границах раздела фаз пока не существует. Однако на поверхностях раздела жидкость – газ и жидкость – жидкость может быть точно измерено поверхностное натяжение, поэтому для определения адсорбции особенно важным является уравнение изотермы адсорбции Гиббса:

    (7)

    где с – концентрация при равновесии адсорбционного слоя и газообразного или растворенного вещества в среде, из которой происходит адсорбция;

    dσ – бесконечно малое изменение поверхностного натяжения; R – универсальная газовая постоянная; Т – температура; dс – бесконечно малое изменение концентрации раствора; Г- поверхностный избыток адсорбируемого вещества.

    Уравнение Гиббса позволяет определить величину поверхностного избытка по уменьшению величины σ, вызванному изменением концентрации раствора. Г представляет собой разность между концентрациями адсорбтива в поверхностном слое и в объеме раствора. Конечный результат вычисления Г не зависит от способа выражения концентрации с. Знак адсорбции определяется знаком производной .

    Если адсорбция положительна, то согласно уравнению (7) <0, Г>0. При отрицательной адсорбции >0, Г<0. Зависимость знака адсорбции от знака называют правилом Гиббса.

    Уравнение изотермы адсорбции Гиббса с точки зрения термодинамики универсально и применимо к границам раздела любых фаз. Однако область практического использования уравнения для определения величины адсорбции ограничена системами, у которых доступно экспериментальное измерение поверхностного натяжения, т.е. системами жидкость-газ и жидкость-жидкость. Рассчитанные по этому уравнению значения Г наиболее близко совпадают со значениями, найденными другими методами, в области разбавленных растворов.