• Формула работы силы тяжести в физике. Работа силы тяжести. Потенциальная энергия тела, поднятого над землей. Потенциальная и кинетическая энергии

    Обратите внимание, что у работы и энергии одинаковые единицы измерения. Это означает, что работа может переходить в энергию. Например, для того, чтобы тело поднять на некоторую высоту, тогда оно будет обладать потенциальной энергией , необходима сила, которая совершит эту работу. Работа силы по поднятию перейдет в потенциальную энергию.

    Правило определения работы по графику зависимости F(r): работа численно равна площади фигуры под графиком зависимости силы от перемещения.


    Угол между вектором силы и перемещением

    1) Верно определяем направление силы, которая выполняет работу; 2) Изображаем вектор перемещения; 3) Переносим вектора в одну точку, получаем искомый угол.


    На рисунке на тело действуют сила тяжести (mg), реакция опоры (N), сила трения (Fтр) и сила натяжения веревки F, под воздействием которой тело совершает перемещение r.

    Работа силы тяжести



    Работа реакции опоры



    Работа силы трения



    Работа силы натяжения веревки



    Работа равнодействующей силы

    Работу равнодействующей силы можно найти двумя способами: 1 способ - как сумму работ (с учетом знаков "+" или "-") всех действующих на тело сил, в нашем примере
    2 способ - в первую очередь найти равнодействующую силу, затем непосредственно ее работу, см. рисунок


    Работа силы упругости

    Для нахождения работы, совершенной силой упругости, необходимо учесть, что эта сила изменяется, так как зависит от удлинения пружины. Из закона Гука следует, что при увеличении абсолютного удлинения, сила увеличивается.

    Для расчета работы силы упругости при переходе пружины (тела) из недеформированного состояния в деформированное используют формулу

    Мощность

    Скалярная величина, которая характеризует быстроту выполнения работы (можно провести аналогию с ускорением , которое характеризует быстроту изменения скорости). Определяется по формуле

    Коэффициент полезного действия

    КПД - это отношение полезной работы, совершенной машиной, ко всей затраченной работе (подведенной энергии) за то же время

    Коэффициент полезного действия выражается в процентах. Чем ближе это число к 100%, тем выше производительность машины. Не может быть КПД больше 100, так как невозможно выполнить больше работы, затратив меньше энергии.

    КПД наклонной плоскости - это отношение работы силы тяжести, к затраченной работе по перемещению вдоль наклонной плоскости.

    Главное запомнить

    1) Формулы и единицы измерения;
    2) Работу выполняет сила;
    3) Уметь определять угол между векторами силы и перемещения

    Если работа силы при перемещении тела по замкнутому пути равна нулю, то такие силы называют консервативными или потенциальными . Работа силы трения при перемещении тела по замкнутому пути никогда не равна нулю. Сила трения в отличие от силы тяжести или силы упругости является неконсервативной или непотенциальной .

    Есть условия, при которых нельзя использовать формулу
    Если сила является переменной, если траектория движения является кривой линией. В этом случае путь разбивается на малые участки, для которых эти условия выполняются, и подсчитать элементарные работы на каждом из этих участков. Полная работа в этом случае равна алгебраической сумме элементарных работ:

    Значение работы некоторой силы зависит от выбора системы отсчета.

    Работа силы тяжести - раздел Философия, Теоретическая механикакраткий курс конспект лекций по теоретической механике При Вычислении Работы Силы Тяжести Будем Считать, Что Мы Расс...

    Направим ось вертикально вверх. Точка с массой перемещается по некоторой траектории из положения в положение (Рис.6.2). Проекции силы тяжести на оси координат равны: где – ускорение свободного падения.

    Вычислим работу силы тяжести. Используя формулу (6.3), получаем:

    Как видно, сила тяжести – потенциальная сила. Ее работа не зависит от траектории точки, а определяется перепадом высот между начальным и конечным положениями точки, будучи равной убыли потенциальной энергии материального тела.

    Таким образом,

    Работа силы тяжести положительна, если точка теряет высоту (опускается) и отрицательна, если точка набирает высоту.

    Конец работы -

    Эта тема принадлежит разделу:

    Теоретическая механикакраткий курс конспект лекций по теоретической механике

    Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования.. московский государственный строительный университет..

    Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

    Что будем делать с полученным материалом:

    Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

    Все темы данного раздела:

    Основные законы механики
    Теоретическая механика относится к числу так называемых аксиоматических наук. В ее основе лежит система исходных положений – аксиом, принимаемых без доказательства, но проверенных не только прямыми

    Аксиома 3
    Две материальные точки взаимодействуют с силами, равными по модулю и направленными по одной прямой в противоположные стороны (Рис.!.2). Аксиома 4(Принцип

    Скорость точки
    Быстроту движения точки характеризует ее скорость, к определению которой мы сейчас переходим. Пусть в момент времени

    Ускорение точки
    Быстроту изменения вектора скорости характеризует ускорение точки. Пусть в момент времени точка нах

    Аксиома 3
    Система двух сил, приложенная к абсолютно твердому телу, уравновешена (эквивалентна нулю) тогда и только тогда, когда эти силы равны по модулю и действуют по одной прямой в противоположные

    Момент силы относительно точки
    Пусть дана сила, приложенная в точке

    Момент силы относительно оси
    Моментом силы относительно оси называется проекция на ось момента силы, вычисленного относительно любой точки этой оси:

    Пара сил
    Парой сил называется система двух сил, равных по модулю и действующих по параллельным прямым в противоположные стороны. Плоскость, в ко

    Дифференциальные уравнения движения механической системы
    Рассмотрим механическую систему, состоящую из материальных точек. Для каждой точки системы в инерциальной системе о

    Основные свойства внутренних сил
    Рассмотрим две любые точки механической системы и

    Теорема об изменении количества движения механической системы
    Сложим почленно все равенства (3.1): Учитывая первое основное св

    Теорема об изменении кинетического момента
    Умножим каждое из уравнений (3.1) слева векторно на радиус–вектор соответствующей точки и сложим

    Условия равновесия
    Остановимся на вопросах равновесия материальных тел, которые составляют существенную часть раздела "Статика" курса теоретической механики. Под равновесием в механике традиционно

    Равновесие системы сил, линии действия которых лежат в одной плоскости
    Во многих практически интересных случаях тело находится в равновесии под действием системы сил, линии действия которых расположены в одной плоскости. Примем эту плоскость за координатную

    Расчет ферм
    Особое место в ряду статических задач занимает расчет ферм. Фермой называется жесткая конструкция из прямолинейных стержней (Рис.3.3). Если все стержни фермы и вся приложенная к ней

    Равновесие тела при наличии трения
    Как известно, при скольжении тела по опорной поверхности возникает сопротивление, тормозящее скольжение. Это явление учитывается путем введения в рассмотрение силы трения.

    Центр параллельных сил
    Это понятие вводится для системы параллельных сил, имеющих равнодействующую, причем точки приложения сил системы – точки

    Центр тяжести тела
    Рассмотрим материальное тело, расположенное вблизи поверхности Земли (в поле земного притяжения). Допустим сначала, что тело состоит из конечного числа материальных точек, другими словами – частиц,

    Центр масс механической системы. Теорема о движении центра масс
    Инерционные свойства материального тела определяются не только его массой, но и характером распределения этой массы в теле. Существенную роль в описании такого распределения играет положение центра

    ЛЕКЦИЯ 5
    5.1. Движение абсолютно твёрдого тела Одной из важнейших задач механики является описание движения абсолютно твердого тела. В общем случае различные точки

    Поступательное движение твердого тела
    Поступательным называется движение твердого тела, при котором любая прямая, проведенная в теле, остается параллельной своему первоначальному положению во все время движения.

    Кинематика вращательного движения твердого тела
    При вращательном движении в теле существует единственная прямая, все точки которой

    Скоростью тела
    Окончательно получаем: (5.4) Формула (5.4) называется формулой Эйлера. На Рис.5.

    Дифференциальное уравнение вращательного движения твердого тела
    Вращение твердого тела, как и любое другое движение, происходит в результате воздействия внешних сил. Для описания вращательного движения используем теорему об изменении кинетического момента относ

    Кинематика плоскопараллельного движения твердого тела
    Движение тела называется плоскопараллельным, если расстояние от любой точки тела до некоторой неподвижной (основной) плоскости остается неизменным во все время движения

    Дифференциальные уравнения плоскопараллельного движения твердого тела
    При изучении кинематики плоско-параллельного движения твердого тела за полюс можно принимать любую точку тела. При решении задач динамики за полюс всегда принимают центр масс тела, а в качестве под

    Система Кенига. Первая теорема Кенига
    (Изучить самостоятельно) Пусть система отсчета неподвижная (инерциальная). Система

    Работа и мощность силы. Потенциальная энергия
    Половина произведения массы точки на квадрат ее скорости называется кинетической энергией материальной точки. Кинетической энергией механической системы назы

    Теорема об изменении кинетической энергии механической системы
    Теорема об изменении кинетической энергии относится к числу общих теорем динамики наряду с доказанными ранее теоремами об изменении количества движения и изменения момента количеств

    Работа внутренних сил геометрически неизменяемой механической системы
    Заметим, что в отличие от теоремы об изменении количества движения и теоремы об изменении кинетического момента в теорему об изменении кинетической энергии в общем случае входят внутренние силы.

    Вычисление кинетической энергии абсолютно твердого тела
    Получим формулы для вычисления кинетической энергии абсолютно твердого тела при некоторых его движениях. 1. При поступательном движении в любой момент времени скорости всех точек тела один

    Работа внешних сил, приложенных к абсолютно твердому телу
    В разделе "Кинематика" установлено, что скорость любой точки твердого тела геометрически складывается из скорости точки, принятой за полюс, и скорости, полученной точкой при сферическом д

    Работа упругой силы
    Понятие упругой силы обычно ассоциируется с реакцией линейно–упругой пружины. Направим ось вдоль пр

    Работа вращающего момента
    Пусть сила приложена в некоторой точке тела, имеющего ось вращения. Тело вращается с угловой скорос

    Возможные скорости и возможные перемещения
    Понятия возможной скорости и возможного перемещения введем сначала для материальной точки, на которую наложена голономная удерживающая нестационарная связь. Возможной скоростью мат

    Идеальные связи
    Связи, наложенные на механическую систему, называются идеальными, если сумма работ всех реакций связей на любом возможном перемещении системы равна нулю:

    Принцип возможных перемещений
    Принцип возможных перемещений устанавливает условия равновесия механических систем. Под равновесием механической системы традиционно понимают состояние ее покоя по отношению к выбранной инерциально

    Общее уравнение динамики
    Рассмотрим механическую систему, состоящую из материальных точек, на которую наложены идеальные уде

    Полезно ознакомиться в отдельности с работой каждой из механических сил, с которыми мы ознакомились в пятой главе: силы тяжести, силы упругости и силы трения. Начнем с силы тяжести. Сила тяжести равна и направлена по вертикали вниз. Вблизи поверхности Земли ее можно считать постоянной. При движении тела по вертикали вниз сила тяжести совпадает по направлению с перемещением. При переходе с высоты над каким-то уровнем, от которого мы начинаем отсчет высоты, до высоты над тем же уровнем (рис. 192), тело совершает перемещение, по абсолютной величине равное Так как направления перемещения и силы совпадают, то работа силы тяжести положительна и равна:

    Высоты не обязательно отсчитывать от поверхности Земли. Для начала отсчета высот можно выбрать любой уровень. Это может быть пол комнаты, стол или стул, это может быть и дно ямы, вырытой в земле, и т. д. Ведь в формулу для работы входит разность высот, а она не зависит от того, откуда начинать их отсчет. Мы могли бы, например, условиться начинать отсчет высоты с уровня В (см. рис. 192). Тогда высота этого уровня была бы равна нулю, а работа выражалась бы равенством

    где - высота точки над уровнем В.

    Если тело движется вертикально вверх, то сила тяжести направлена против движения тела и ее работа отрицательна. При подъеме тела на высоту над тем уровнем, с которого оно брошено, сила тяжести совершает работу, равную

    Если после подъема вверх тело возвращается в исходную течку, то работа на таком пути, начинающемся и кончающемся в одной и той же точке (на замкнутом пути), на пути «туда и обратно», равна нулю. Это одна из особенностей силы тяжести: работа силы тяжести на замкнутом пути равна нулю.

    Теперь выясним, какую работу совершает сила тяжести в случае, когда тело движется не по вертикали.

    В качестве примера рассмотрим движение тела по наклонной плоскости (рис. 193). Допустим, что тело массой по наклонной плоскости высотой совершает перемещение по абсолютной величине равное длине наклонной плоскости. Работу силы тяжести в этом случае надо вычислять по формуле . Но из рисунка видно, что

    Мы получили для работы то же самое значение.

    Выходит, что работа силы тяжести не зависит от того, движется ли тело по вертикали или

    проходит более длинный путь по наклонной плоскости. При одной и той же «потере высоты» работа силы тяжести одинакова (рис. 194).

    Это справедливо не только при движении по наклонной плоскости, но и по любому другому пути. В самом деле, допустим, что тело движется по какому-то произвольному пути, например по такому, какой изображен на рисунке 195. Весь этот путь мы можем мысленно разбить на ряд малых участков: Каждый из них может считаться маленькой наклонной плоскостью, а все движение тела на пути можно представить как движение по множеству наклонных плоскостей, переходящих одна в другую. Работа силы тяжести на каждой такой наклонной плоскости равна произведению на изменение высоты тела на ней. Если изменения высот на отдельных участках равны то работы силы тяжести на них равны и т. д. Тогда полную работу на всем пути можно найти, сложив все эти работы:

    Следовательно,

    Таким образом, работа силы тяжести не зависит от траектории движения тела и всегда равна произведению силы тяжести на разность высот в исходном и конечном положениях. При движении вниз работа положительна, при движении вверх - отрицательна»

    Почему же в технике и быту при подъеме грузов часто пользуются наклонной

    плоскостью? Ведь работа перемещения груза по наклонной плоскости такая же, как и при движении по вертикали!

    Это объясняется тем, что при равномерном движении груза по наклонной плоскости сила, которая должна быть приложена к грузу в направлении перемещения, меньше силы тяжести. Правда, груз при этом проходит больший путь. Больший путь - это плата а то, что по наклонной плоскости груз можно поднимать с помощью меньшей силы.

    Задача, Шарик массой скатывается по рельсам, образующим круговую петлю радиусом (рис. 196). Какую работу совершает сила тяжести к моменту, когда шарик достигает высшей точки петли С, если в начальный момент он находится на высоте Н над нижней точкой петли?

    Решение. Работа силы тяжести равна произведению ее значения на разность высот начального и конечного положений шарика. Начальная высота равна Н, а конечная, как это видно из рисунка, равна . Следовательно,

    Упражнение 49

    1. Зависит ли работа силы тяжести от длины траектории тела, на которое она действует? От массы тела?

    2. Чему равна работа силы тяжести, если движущееся тело, на которое она действует, пройдя некоторую траекторию, вернулось к исходной точке?

    3. Тело брошено под некоторым углом к горизонту. Описав параболу, тело упало на землю. Чему равна работа силы тяжести, если начальная и конечная точки траектории лежат на одной горизонтали?

    4. Какая сила совершает работу при движении тела без трения по наклонной плоскости? Зависит ли эта работа от длины наклонной плоскости?

    5. Камень массой брошен так, что он описал траекторию, показанную на рисунке 197, а. Какова работа силы тяжести при таком движении камня? Сравните ее с работой при движении того же камня по траекториям, изображенным на рисунках 197, б и в.

    6. Какую работу совершает человек массой 75 кг, когда он поднимается по лестнице с первого этажа до пятого, если высота каждого этажа равна (Движение человека считать равномерным)

    7. Тело массой 2 кг брошено вертикально вверх и поднялось на высоту 10 м. Качая по величине и по знаку работа совершена силой тяжести?

    8. Лыжник спускается с горы высотой 60 м. Тотчас после спуска он оказывается на склоне соседней горы и поднимается по ней на высоту 40 м (рис. 198), Какую по величине и по знаку работу совершает сила тяжести при этом движении лыжника? Масса лыжника равна 80 кг.

    9. Маятник совершает одно полное колебание. Какова работа силы тяжести при этом движении маятника?

    На этом уроке мы рассмотрим различное движение тела под действием силы тяжести и научимся находить работу этой силы. Также введём понятие потенциальной энергии тела, узнаем, как связана эта энергия с работой силы тяжести, выведем формулу, по которой находится эта энергия. С помощью данной формулы решим задачу, взятую из сборника для подготовки к единому государственному экзамену.

    На прошлых уроках мы изучили разновидности сил в природе. Для каждой силы необходимо правильно вычислять работу. Данный урок посвящён изучению работы силы тяжести.

    При небольших расстояниях от поверхности Земли сила тяжести постоянна и по модулю равна , где m - масса тела, g - ускорение свободного падения.

    Пусть тело массой m свободно падает с высоты над каким-либо уровнем, с которого ведётся отсчёт, до высоты над тем же уровнем (см. Рис. 1).

    Рис. 1. Свободное падение тела с высоты до высоты

    При этом модуль перемещения тела равен разности этих высот:

    Так как направление перемещения и силы тяжести совпадают, то работа силы тяжести равна:

    Значение высот в этой формуле можно отсчитывать от любого уровня (уровень моря, уровень дна ямы, которая вырыта в земле, поверхность стола, поверхность пола и т. д.). В любом случае высоту данной поверхности выбирают равной нулю, поэтому уровень данной высоты называют нулевым уровнем .

    Если тело падает с высоты h до нулевого уровня, то работа силы тяжести будет равна:

    Если тело, брошенное вверх с нулевого уровня, достигает высоты hнад этим уровнем, то работа силы тяжести будет равна:

    Пусть тело массой m движется по наклонной плоскости высотой h и при этом совершает перемещение , модуль которого равен длине наклонной плоскости (см. Рис. 2).

    Рис. 2. Движение тела по наклонной плоскости

    Работа силы равна скалярному произведению вектора силы на вектор перемещения тела, совершённого под действием данной силы, то есть работа сила тяжести в данном случае будет равна:

    где - угол между векторами силы тяжести и перемещения.

    На рисунке 2 видно, что перемещение () представляет собой гипотенузу прямоугольного треугольника, а высота h - катет. Согласно свойству прямоугольного треугольника:

    Следовательно

    Мы получили выражение для работы силы тяжести такое же, как в случае вертикального движения тела. Можно сделать вывод: если траектория тела не является прямолинейной и тело движется под действием силы тяжести, то работа силы тяжести определяется только изменением высоты тела над некоторым нулевым уровнем и не зависит от траектории движения тела.

    Рис. 3. Движение тела по криволинейной траектории

    Докажем предыдущее утверждение. Пусть тело движется по некоторой криволинейной траектории (см. Рис. 3). Эту траекторию мысленно разбиваем на ряд малых участков, каждый из которых можно считать маленькой наклонной плоскостью. Движение тела по всей траектории можно представить как движение по множеству наклонных плоскостей. Работа силы тяжести на каждом из участков будет равна произведению силы тяжести на высоту данного участка. Если изменения высот на отдельных участках равны , то работы силы тяжести на них равны:

    Полная работа на всей траектории равна сумме работ на отдельных участках:

    - полная высота, которую преодолело тело,

    Таким образом, работа силы тяжести не зависит от траектории движения тела и всегда равна произведению силы тяжести на разность высот в исходном и конечном положениях. Что и требовалось доказать.

    При движении вниз работа положительна, при движении вверх - отрицательна.

    Пусть некоторое тело совершило движение по замкнутой траектории, то есть оно сначала спустилось вниз, а потом по какой-то другой траектории вернулось в исходную точку. Так как тело оказалось в той же самой точке, в которой оно было изначально, то разность высот между начальным и конечным положением тела равна нулю, поэтому и работа силы тяжести будет равна нулю. Следовательно, работа силы тяжести при движении тела по замкнутой траектории равна нулю.

    В формуле для работы силы тяжести вынесем (-1) за скобку:

    Из прошлых уроков известно, что работа сил, приложенных к телу, равна разности между конечным и начальным значением кинетической энергии тела. В полученной формуле также видна связь между работой силы тяжести и разностью между значениями некоторой физической величины, равной . Такая величина называется потенциальной энергией тела , которое находится на высоте h над некоторым нулевым уровнем.

    Изменение потенциальной энергии отрицательно по величине, если совершается положительная работа силы тяжести (видно из формулы ). Если совершается отрицательная работа, то изменение потенциальной энергии будет положительным.

    Если тело падает с высоты h на нулевой уровень, то работа силы тяжести будет равна значению потенциальной энергии тела, поднятого на высоту h .

    Потенциальная энергия тела , поднятого на некоторую высоту над нулевым уровнем, равна работе, которую совершит сила тяжести при падении данного тела с данной высоты на нулевой уровень.

    В отличие от кинетической энергии, которая зависит от скорости тела, потенциальная энергия может быть не равной нулю даже у покоящихся тел.

    Рис. 4. Тело, находящееся ниже нулевого уровня

    Если тело находится ниже нулевого уровня, то оно обладает отрицательной потенциальной энергией (см. Рис. 4). То есть знак и модуль потенциальной энергии зависят от выбора нулевого уровня. Работа, которая совершается при перемещении тела, от выбора нулевого уровня не зависит.

    Термин «потенциальная энергия» применяется только по отношению к системе тел. Во всех вышеприведенных рассуждениях этой системой была «Земля - тело, поднятое над Землёй».

    Однородный прямоугольный параллелепипед массой m с рёбрами располагают на горизонтальной плоскости на каждой из трёх граней поочерёдно. Какова потенциальная энергия параллелепипеда в каждом из этих положений?

    Дано: m - масса параллелепипеда; - длина рёбер параллелепипеда.

    Найти: ; ;

    Решение

    Если нужно определить потенциальную энергию тела конечных размеров, то можно считать, что вся масса такого тела сосредоточена в одной точке, которая называется центром масс данного тела.

    В случае симметричных геометрических тел центр масс совпадает с геометрическим центром, то есть (для данной задачи) с точкой пересечения диагоналей параллелепипеда. Таким образом, необходимо посчитать высоту, на которой расположена данная точка при различных расположениях параллелепипеда (см. Рис. 5).

    Рис. 5. Иллюстрация к задаче

    Для того чтобы найти потенциальную энергию, необходимо полученные значения высоты умножить на массу параллелепипеда и ускорение свободного падения.

    Ответ: ; ;

    На данном уроке мы научились вычислять работу силы тяжести. При этом увидели, что, независимо от траектории движении тела, работа силы тяжести определяется разностью между высотами начального и конечного положения тела над некоторым нулевым уровнем. Также мы ввели понятие потенциальной энергии и показали, что работа силы тяжести равна изменению потенциальной энергии тела, взятой с противоположным знаком. Какую работу надо совершить, чтобы переложить пакет с мукой массой 2 кг с полки, находящейся на высоте 0,5 м относительно пола, на стол, находящийся на высоте 0,75 м относительно пола? Чему равны относительно пола потенциальная энергия пакета с мукой, лежавшего на полке, и его потенциальная энергия тогда, когда он находится на столе?

    Работа силы тяжести. Решение задач

    Цель урока: определить формулу для работы силы тяжести; определить, что работы силы тяжести не зависит от траектории движения тела; развить практические навыки по решению задач.

    Ход урока.

    1.Организационный момент. Приветствие учащихся, проверка отсутствующих, постановка цели урока.

    2.Проверка домашней работы.

    3.Изучение нового материала. На предыдущем уроке мы с вами определили формулу для определения работы. Какой формулой определяется работа постоянной силы? (А= FScosα )

    Что такое А и S ?

    Теперь же применим эту формулу для силы тяжести. Но для начала вспомним, чему равна сила тяжести? (F = mg )

    Рассмотрим случай а) тело падает вертикально вниз. Как мы с вами знаем сила тяжести всегда направленно строго вниз. Для того чтобы определить направление S необходимо вспомнить определение. (Перемещение-это вектор соединяющий начальную и конечную точку. Направлен он от начала к концу)

    Т.о. для определения , Так как направление перемещения и силы тяжести совпадают, то α =0 и работа силы тяжести равна:

    Рассмотрим случай б) тело двигается вертикально вверх. Т.к. направление силы тяжести и перемещении противоположны, то то α =0 и работа силы тяжести равна .

    Т.о. образом если сравнить две формулы по модулю, то они будут одинаковы.

    Рассмотрим случай в) тело движется по наклонной плоскости. Работа силы равна скалярному произведению вектора силы на вектор перемещения тела, совершённого под действием данной силы, то есть работа сила тяжести в данном случае будет равна , где – угол между векторами силы тяжести и перемещения. На рисунке видно, что перемещение () представляет собой гипотенузу прямоугольного треугольника, а высота h – катет. Согласно свойству прямоугольного треугольника:

    .Следовательно

    Т.о. какой можно сделать вывод? (что работа силы тяжести не зависит от траектории движения.)

    Рассмотрим последний пример, когда траектория движения будет замкнутая линия. Кто скажет чему будет равна работа и почему? (А=0, т.к. перемещение равно 0)

    Отметим!: работа силы тяжести при движении тела по замкнутой траектории равна нулю.

    4. Закрепление материала.

    Задача 1. Охотник стреляет со скалы под углом 40° к горизонту. За время падения пули работа силы тяжести составила 5 Дж. Если пуля вошла в землю на расстоянии 250 м от скалы, то какова её масса?

    Задача 2. Находясь на Нептуне, тело совершило перемещение так, как показано на рисунке. При этом перемещении работа силы тяжести составила 840 Дж. Если масса данного тела равна 5 кг, то каково ускорение свободного падения на Нептуне?

    5. Домашнее задание.