• Из истории геометрического построения циркулем и линейкой. §5. Построения с помощью других инструментов. Построения Маскерони с помощью одного циркуля Геометрические построения циркулем и линейкой

    Построение с помощью циркуля и линейки

    Построения с помощью циркуля и линейки - раздел евклидовой геометрии , известный с античных времён. В задачах на построение циркуль и линейка считаются идеальными инструментами, в частности:

    • Линейка не имеет делений и имеет сторону бесконечной длины, но только одну.
    • Циркуль может иметь сколь угодно большой или сколь угодно малый раствор (то есть может чертить окружность произвольного радиуса).

    Пример

    Разбиение отрезка пополам

    Задача на бисекцию . С помощью циркуля и линейки разбить данный отрезок AB на две равные части. Одно из решений показано на рисунке:

    • Циркулем проводим окружности с центром в точках A и B радиусом AB .
    • Находим точки пересечения P и Q двух построенных окружностей (дуг).
    • По линейке проводим отрезок или линию, проходящую через точки P и Q .
    • Находим искомую середину отрезка AB - точку пересечения AB и PQ .

    Формальное определение

    В задачах на построение рассматриваются множество всех точек плоскости, множество всех прямых плоскости и множество всех окружностей плоскости, над которыми допускаются следующие операции:

    1. Выделить точку из множества всех точек:
      1. произвольную точку
      2. произвольную точку на заданной прямой
      3. произвольную точку на заданной окружности
      4. точку пересечения двух заданных прямых
      5. точки пересечения/касания заданной прямой и заданной окружности
      6. точки пересечения/касания двух заданных окружностей
    2. «С помощью линейки » выделить прямую из множества всех прямых:
      1. произвольную прямую
      2. произвольную прямую, проходящую через заданную точку
      3. прямую, проходящую через две заданных точки
    3. «С помощью циркуля » выделить окружность из множества всех окружностей:
      1. произвольную окружность
      2. произвольную окружность с центром в заданной точке
      3. произвольную окружность с радиусом, равным расстоянию между двумя заданными точками
      4. окружность с центром в заданной точке и с радиусом, равным расстоянию между двумя заданными точками

    В условиях задачи задается некоторое множество точек. Требуется с помощью конечного количества операций из числа перечисленных выше допустимых операций построить другое множество точек, находящееся в заданном соотношении с исходным множеством.

    Решение задачи на построение содержит в себе три существенные части:

    1. Описание способа построения заданного множества.
    2. Доказательство того, что множество, построенное описанным способом, действительно находится в заданном соотношении с исходным множеством. Обычно доказательство построения производится как обычное доказательство теоремы, опирающееся на аксиомы и другие доказанные теоремы.
    3. Анализ описанного способа построения на предмет его применимости к разным вариантам начальных условий, а также на предмет единственности или неединственности решения, получаемого описанным способом.

    Известные задачи

    • Задача Аполлония о построении окружности, касающейся трех заданных окружностей. Если ни одна из заданных окружностей не лежит внутри другой, то эта задача имеет 8 существенно различных решений.
    • Задача Брахмагупты о построении вписанного четырехугольника по четырем его сторонам.

    Построение правильных многоугольников

    Античным геометрам были известны способы построения правильных n -угольников для , , и .

    Возможные и невозможные построения

    Все построения являются не чем иным, как решениями какого-либо уравнения , причем коэффициенты этого уравнения связаны с длинами заданных отрезков. Поэтому удобно говорить о построении числа - графического решения уравнения определенного типа. В рамках вышеописанных требований возможны следующие построения:

    • Построение решений линейных уравнений .
    • Построение решений квадратных уравнений .

    Иначе говоря, возможно построить лишь числа равные арифметическим выражениям с использованием квадратного корня из исходных чисел (длин отрезков). Например,

    Вариации и обобщения

    • Построения с помощью одного циркуля. По теореме Мора - Маскерони с помощью одного циркуля можно построить любую фигуру, которую можно построить циркулем и линейкой. При этом прямая считается построенной, если на ней заданы две точки.
    • Построения с помощью одной линейки. Легко заметить, что с помощью одной линейки можно проводить только проективно-инвариантные построения. В частности, невозможно даже разбить отрезок на две равные части, либо найти центр нарисованной окружности. Но при наличии на плоскости заранее проведённой окружности с отмеченным центром с помощью линейки можно провести те же построения, что и циркулем и линейкой (теорема Понселе - Штейнера (англ. )), 1833. Если на линейке есть две засечки, то построения с помощью неё эквивалентны построениям с помощью циркуля и линейки (важный шаг в доказательстве этого сделал Наполеон).
    • Построения с помощью инструментов с ограниченными возможностями. В задачах такого рода инструменты (в противоположность классической постановке задачи) считаются не идеальными, а ограниченными: прямую через две точки с помощью линейки можно провести только при условии, что расстояние между этими точками не превышает некоторой величины; радиус окружностей, проводимых с помощью циркуля, может быть ограничен сверху, снизу или одновременно и сверху, и снизу.
    • Построения с помощью плоского оригами. см. правила Худзита

    См. также

    • Программы динамической геометрии позволяют выполнять построения с помощью циркуля и линейки на компьютере.

    Примечания

    Литература

    • А. Адлер Теория геометрических построений / Перевод с немецкого Г. М. Фихтенгольца. - Издание третье. - Л. : Учпедгиз, 1940. - 232 с.
    • И. И. Александров Сборник геометрических задач на построение . - Издание восемнадцатое. - М .: Учпедгиз, 1950. - 176 с.
    • Б. И. Аргунов, М. Б. Балк . - Издание второе. - М .: Учпедгиз, 1957. - 268 с.
    • А. М. Воронец Геометрия циркуля . - М.-Л.: ОНТИ, 1934. - 40 с. - (Популярная библиотека по математике под общей редакцией Л. А. Люстерника).
    • В. А. Гейлер Неразрешимые задачи на построение // СОЖ . - 1999. - № 12. - С. 115-118.
    • В. А. Кириченко Построения циркулем и линейкой и теория Галуа // Летняя школа «Современная математика» . - Дубна, 2005.
    • Ю. И. Манин Книга IV. Геометрия // Энциклопедия элементарной математики . - М .: Физматгиз, 1963. - 568 с.
    • Ю. Петерсен Методы и теории решения геометрических задач на построение . - М .: Типография Э. Лисснера и Ю. Романа, 1892. - 114 с.
    • В. В. Прасолов Три классические задачи на построение. Удвоение куба, трисекция угла, квадратура круга . - М .: Наука, 1992. - 80 с. - (Популярные лекции по математике).
    • Я. Штейнер Геометрические построения, выполняемые с помощью прямой линии и неподвижного круга . - М .: Учпедгиз, 1939. - 80 с.
    • Факультативный курс по математике. 7-9 / Сост. И. Л. Никольская. - М .: Просвещение , 1991. - С. 80. - 383 с. - ISBN 5-09-001287-3

    Wikimedia Foundation . 2010 .

    Смотреть что такое "Построение с помощью циркуля и линейки" в других словарях:

      Раздел евклидовой геометрии, известный с античных времён. В задачах на построение возможны следующие операции: Отметить произвольную точку на плоскости, точку на одной из построенных линий или точку пересечения двух построенных линий. С помощью… … Википедия

      Построения с помощью циркуля и линейки раздел евклидовой геометрии, известный с античных времён. В задачах на построение возможны следующие операции: Отметить произвольную точку на плоскости, точку на одной из построенных линий или точку… … Википедия

      Сущ., с., употр. сравн. часто Морфология: (нет) чего? построения, чему? построению, (вижу) что? построение, чем? построением, о чём? о построении; мн. что? построения, (нет) чего? построений, чему? построениям, (вижу) что? построения, чем?… … Толковый словарь Дмитриева

      Круг и квадрат одинаковой площади Квадратура круга задача, заключающаяся в нахождении построения с помощью циркуля и линейки квадрата, равновеликого по площади данно … Википедия

      Раздел математики, занимающийся изучением свойств различных фигур (точек, линий, углов, двумерных и трехмерных объектов), их размеров и взаимного расположения. Для удобства преподавания геометрию подразделяют на планиметрию и стереометрию. В… … Энциклопедия Кольера

      В наиболее общем смысле теория, изучающая те или иные математич. объекты на основе их групп автоморфизмов. Так, напр., возможны Г. т. полей, колец, топологич. пространств и т. п. В более узком смысле под Г. т. понимается Г. т. полей. Возникла эта … Математическая энциклопедия

      У этого термина существуют и другие значения, см. Квадратура. Квадратура (лат. quadratura, придание квадратной формы) математический термин, первоначально обозначавший нахождение площади заданной фигуры или поверхности. В дальнейшем… … Википедия

      Правила Худзиты набор из семи правил формально описывающие геометрические построения с помощью плоского оригами, подобным построениям с помощью циркуля и линейки. Фактически они описывают все возможные способы получения одной новой складки… … Википедия

    Энциклопедичный YouTube

      1 / 5

      ✪ 7 класс, 22 урок, Построения циркулем и линейкой

      ✪ Геометрия 7 Окружность Построения циркулем и линейкой

      ✪ Построение треугольника по двум сторонам и углу между ними

      ✪ Геометрия 7 Примеры задач на построение

      ✪ 7 класс, 23 урок, Примеры задач на построение

      Субтитры

    Примеры

    Задача на бисекцию . С помощью циркуля и линейки разбить данный отрезок AB на две равные части. Одно из решений показано на рисунке:

    • Циркулем проводим окружности с центром в точках A и B радиусом AB .
    • Находим точки пересечения P и Q двух построенных окружностей (дуг).
    • По линейке проводим отрезок или линию, проходящую через точки P и Q .
    • Находим искомую середину отрезка AB - точку пересечения AB и PQ .

    Формальное определение

    В задачах на построение рассматриваются множество следующих объектов: все точки плоскости, все прямые плоскости и все окружности плоскости. В условиях задачи изначально задается (считается построенными) некоторое множество объектов. К множеству построенных объектов разрешается добавлять (строить):

    1. произвольную точку;
    2. произвольную точку на заданной прямой;
    3. произвольную точку на заданной окружности;
    4. точку пересечения двух заданных прямых;
    5. точки пересечения/касания заданной прямой и заданной окружности;
    6. точки пересечения/касания двух заданных окружностей;
    7. произвольную прямую, проходящую через заданную точку;
    8. прямую, проходящую через две заданные точки;
    9. произвольную окружность с центром в заданной точке;
    10. произвольную окружность с радиусом, равным расстоянию между двумя заданными точками;
    11. окружность с центром в заданной точке и с радиусом, равным расстоянию между двумя заданными точками.

    Требуется с помощью конечного количества этих операций построить другое множество объектов, находящееся в заданном соотношении с исходным множеством.

    Решение задачи на построение содержит в себе три существенные части:

    1. Описание способа построения заданного множества.
    2. Доказательство того, что множество, построенное описанным способом, действительно находится в заданном соотношении с исходным множеством. Обычно доказательство построения производится как обычное доказательство теоремы, опирающееся на аксиомы и другие доказанные теоремы.
    3. Анализ описанного способа построения на предмет его применимости к разным вариантам начальных условий, а также на предмет единственности или неединственности решения, получаемого описанным способом.

    Известные задачи

    Другая известная и неразрешимая с помощью циркуля и линейки задача - построение треугольника по трём заданным длинам биссектрис . Эта задача остаётся неразрешимой даже при наличии инструмента, выполняющего трисекцию угла , например томагавка .

    Допустимые отрезки для построения с помощью циркуля и линейки

    С помощью этих инструментов возможно построение отрезка, который по длине:

    Для построения отрезка с длиной численно равной произведению, частному и квадратному корню из длин заданных отрезков необходимо задание на плоскости построения единичного отрезка (то есть отрезка длины 1). Извлечение корней из отрезков с иными натуральными степенями, не являющимися степенью числа 2, невозможны с помощью циркуля и линейки. Так, например, невозможно при помощи циркуля и линейки из единичного отрезка построить отрезок длиной . Из этого факта, в частности, следует неразрешимость задачи об удвоении куба.

    Возможные и невозможные построения

    С формальной точки зрения, решение любой задачи на построение сводится к графическому решению некоторого алгебраического уравнения , причем коэффициенты этого уравнения связаны с длинами заданных отрезков. Поэтому можно сказать, что задача на построение сводится к отысканию действительных корней некоторого алгебраического уравнения.

    Поэтому удобно говорить о построении числа - графического решения уравнения определенного типа.

    Исходя из возможных построений отрезков возможны следующие построения:

    • Построение решений линейных уравнений .
    • Построение решений уравнений, сводящихся к решениям квадратных уравнений .

    Иначе говоря, возможно строить лишь отрезки, равные арифметическим выражениям с использованием квадратного корня из исходных чисел (заданных длин отрезков).

    Важно отметить, что существенно, что решение должно выражаться при помощи квадратных корней, а не радикалов произвольной степени. Если даже алгебраическое уравнение имеет решение в радикалах, то из этого не следует возможность построения циркулем и линейкой отрезка, равного его решению. Простейшее такое уравнение: x 3 − 2 = 0 , {\displaystyle x^{3}-2=0,} связанное со знаменитой задачей на удвоение куба, сводящаяся к этому кубическому уравнению. Как было сказано выше, решение этого уравнения ( 2 3 {\displaystyle {\sqrt[{3}]{2}}} ) невозможно построить циркулем и линейкой.

    Возможность построить правильный 17-угольник следует из выражения для косинуса центрального угла его стороны:

    cos ⁡ (2 π 17) = − 1 16 + 1 16 17 + 1 16 34 − 2 17 + {\displaystyle \cos {\left({\frac {2\pi }{17}}\right)}=-{\frac {1}{16}}\;+\;{\frac {1}{16}}{\sqrt {17}}\;+\;{\frac {1}{16}}{\sqrt {34-2{\sqrt {17}}}}\;+\;} + 1 8 17 + 3 17 − 34 − 2 17 − 2 34 + 2 17 , {\displaystyle +{\frac {1}{8}}{\sqrt {17+3{\sqrt {17}}-{\sqrt {34-2{\sqrt {17}}}}-2{\sqrt {34+2{\sqrt {17}}}}}},} что, в свою очередь, следует из возможности сведения уравнения вида x F n − 1 = 0 , {\displaystyle x^{F_{n}}-1=0,} где F n {\displaystyle F_{n}} - любое простое число Ферма , с помощью замены переменной к квадратному уравнению.

    Вариации и обобщения

    • Построения с помощью одного циркуля. По теореме Мора - Маскерони с помощью одного циркуля можно построить любую фигуру, которую можно построить циркулем и линейкой. При этом прямая считается построенной, если на ней заданы две точки.
    • Построения с помощью одной линейки. Очевидно, что с помощью одной линейки можно проводить только проективно-инвариантные построения. В частности,
      • невозможно даже разбить отрезок на две равные части,
      • также невозможно найти центр данной окружности.
    Однако,
    • при наличии на плоскости заранее проведённой окружности с отмеченным центром с одной линейкой можно провести те же построения, что и циркулем и линейкой (

    Видеоурок «Построение циркулем и линейкой» содержит учебный материал, являющийся основой для решения задач на построение. Геометрические построения являются важной частью решения многих практических заданий. Без умения корректно отразить условия на рисунке не обходится практически ни одна геометрическая задача. Основная задача данного видеоурока - углубить знания ученика о применении чертежных инструментов для построения геометрических фигур, продемонстрировать возможности данных инструментов, научить решать простейшие задачи на построение.

    Обучение при помощи видеоурока имеет много преимуществ, среди которых наглядность, понятность производимых построений, так как материал демонстрируется при помощи электронных средств приближенно к реальному построению на доске. Построения хорошо видны с любого места в классе, важные моменты выделяются цветом. А сопровождение голосом заменяет подачу учителем стандартного блока учебного материала.

    Видеоурок начинается с объявления названия темы. Ученикам напоминается, что они уже имеют определенные навыки в построении геометрических фигур. На предыдущих уроках, когда ученики изучали основы геометрии и осваивали понятия прямой, точки, угла, отрезка, треугольника, чертили отрезки, равные данным, они выполняли построения простейших геометрических фигур. Подобные построения не требуют сложных навыков, но корректное выполнение заданий важно для дальнейшей работы с геометрическими объектами и решения более сложных геометрических задач.

    Ученикам перечисляется перечень основных инструментов, которые используются для выполнения построений при решении геометрических задач. На изображениях продемонстрированы масштабная линейка, циркуль, треугольник с прямым углом, транспортир.

    Расширяя понятие учеников о том, как выполняются различные виды построений, им рекомендуется обратить внимание на построения, которые осуществляются без масштабной линейки, а для них могут использоваться только циркуль и линейка без делений. Отмечается, что такая группа задач на построение, в которой используются только линейка и циркуль, в геометрии выделяется отдельно.

    Для того чтобы определить, какие геометрические задачи могут быть решены, используя линейку и циркуль, предлагается рассмотреть возможности данных чертежных инструментов. Линейка помогает начертить произвольную прямую, построить прямую, которая проходит через определенные точки. Циркуль предназначен для проведения окружностей. Только при помощи циркуля проводится построение произвольной окружности. При помощи циркуля проводится также отрезок, равный данному. Указанные возможности чертежных инструментов дают возможность выполнить ряд задач на построение. Среди подобных задач на построение:

    1. построение угла, который равен данному;
    2. проведение прямой, перпендикулярную данной, проходящей через указанную точку;
    3. деление отрезка на две равные части;
    4. ряд других задач на построение.

    Далее предлагается решить задание на построение, используя линейку и циркуль. На экране демонстрируется условие задачи, которая состоит в том, чтобы на некотором луче отложить отрезок, равный некоторому отрезку, от начала луча. Решение данной задачи начинается с построения произвольного отрезка АВ и луча ОС. В качестве решения данной задачи предлагается построить окружность радиусом АВ и центром в точке О. После построения образуется пересечение построенной окружности с лучом ОС в некоторой точке D. При этом часть луча, представленная отрезком OD, и является отрезком, равным отрезку АВ. Задача решена.

    Видеоурок «Построение циркулем и линейкой» может быть использован при объяснении учителем основ решения практических задач на построение. Также данный метод можно освоить, самостоятельно изучая данный материал. Может помочь учителю данный видеоурок и при дистанционной подаче материала по данной теме.

    I. Введение.

    II. Главная часть:

      Построение отрезка, равного произведению двух других с помощью циркуля и линейки:

      1. первый способ построения;

        второй способ построения;

        третий способ построения,

    d) четвёртый способ построения.

    2) Построение отрезка, равного отношению двух других с помощью циркуля и линейки:

        первый способ построения;

        второй способ построения.

    Заключение.

    Приложение.

    Введение

    Геометрические построения, или теория геометрических построений - раздел геометрии, где изучают вопросы и методы построения геометрических фигур, используя те или иные элементы построения. Геометрические построения изучаются как в геометрии Евклида, так и в других геометриях, как на плоскости, так и в пространстве. Классическими инструментами построения являются циркуль и линейка (односторонняя математическая), однако, существуют построения другими инструментами: только одним циркулем, только одной линейкой, если на плоскости начерчена окружность и её центр, только одной линейкой с параллельными краями и.т.д.

    Все задачи на построение опираются на постулаты построения, то есть на простейшие элементарные задачи на построение, и задача считается решённой, если она сведена к конечному числу этих простейших задач-постулатов.

    Естественно, каждый инструмент имеет свою конструктивную силу - свой набор постулатов. Так, известно, что разделить отрезок, пользуясь только одной линейкой, на две равные части нельзя, а пользуясь циркулем, можно.

    Искусство построения геометрических фигур при помощи циркуля и линейки было в высокой степени развито в древней Греции. Одна из труднейших задач на построение, которую уже тогда умели выполнить, - построение окружности, касающейся трёх данных окружностей.

    В школе изучают ряд простейших построений циркулем и линейкой (односторонней без делений): построение прямой, проходящей через заданную точку и перпендикулярной или параллельной данной прямой; деление пополам заданного угла, деление отрезка на несколько равных частей, используя теорему Фалеса (по сути дела - деление отрезка на натуральное число); построение отрезка большего данного в целое число раз (по сути -умножение отрезка на натуральное число). Однако, нами нигде не встречалась задача, где надо было бы с помощью циркуля и линейки умножить отрезок на отрезок, то есть построить отрезок, равный произведению двух данных отрезков, или деление отрезка на отрезок, то есть построить отрезок, равный отношению двух других отрезков. Нам показалась данная проблема очень интересной, и мы решили её исследовать, попытаться найти решение и возможность применения найденного метода решения к решению других задач, например, в математике и физике.

    При решении задач на построение традиционная методика рекомендует нам четыре этапа: анализ, построение, доказательство и исследование. Однако, указанная схема решения задач на построение считается весьма академичной, и для её осуществления требуется много времени, поэтому часто отдельные этапы традиционной схемы решения задачи опускаются, например, этапы доказательства, исследования. В своей работе по возможности мы использовали все четыре этапа, да и то только там, где была в этом необходимость и целесообразность.

    И последнее: найденный нами метод построения вышеназванных отрезков предполагает использование, помимо циркуля и линейки, произвольно выбранного единичного отрезка. Введение единичного отрезка диктуется ещё и тем, что он необходим хотя бы для того, чтобы подтвердить справедливость найденного нами метода нахождения отрезка на конкретных частных примерах.

    ОБЩАЯ ПРОБЛЕМА І

    С помощью циркуля и линейки построить отрезок, равный произведению двух других отрезков.

    Примечание:

    предполагается:

      Линейка - односторонняя, без делений.

      Задан отрезок единичной длины.

    Исследование.

    1.Рассмотрим прямые y=2x-2 2 и y=3x-3 2 и попробуем найти координаты точки пересечения этих прямых геометрическим и аналитическим методами:

    а
    ) геометрический метод (Рис.1 ) показал, что координаты точки А пересечения этих прямых: «5»-абсцисса, «6»- ордината, т.е. АЕ=5, АД=6.

    б) аналитический метод данный результат подтверждает, т.е. А (5;6) - точка пересечения прямых.

    Действительно, решив систему уравнений

    y=6 А(5;6)- точка пересечения прямых.

    2.Рассмотрим отрезок: ОВ=2, ОС=3, АД=6, АЕ=5.

    Можно предположить, что АД=ОВ×ОС, т.к. 6=2×3; АЕ=ОВ+ОС, т.к. 5=2+3 ,где

    2=ОВ-угловой коэффициент уравнения y=2x-2 2 , 3=ОС - угловой коэффициент уравнения y=3x-3 2 , АД=у А, ОД=х А - координаты точки А пересечения наших прямых.

    Наше предположение проверим на общем примере аналитическим методом, т.е. на уравнениях прямых y=mx-m 2 и y=nx-n 2 (где m≠n) проверим, что точка пересечения прямых имеет координаты:

    y=nx-n 2 nx-n 2 =mx-m 2 x=(m 2 -n 2)÷(m-n)=m+n и y=mx-m 2 =m(m+n)-m 2 =mn

    координаты точки А пересечения прямых, где m и n – угловые коэффициенты этих прямых, ч.т.д.

    3. Осталось найти метод построения отрезка. АД=ОВ×ОС=m∙n=y А - ординаты точки А пересечения прямых У=mx-m 2 и У=nx-n 2 , где m≠n и m=OB, n=OC- отрезки, отложенные на оси ох. А для этого мы должны найти метод построения прямых У=mx-m 2 и У=nx-n 2 . из рассуждений видно, что эти прямые должны пройти через точки В и С отрезков OB=m и OC=n, которые принадлежат оси ох.

    Замечание 1. Вышеназванные обозначения отрезков соответствуют рис.1 «Приложения»

    Первый способ построения отрезка AD=mn, где m>1ед., n>1ед., m≠n.

    единичный отрезок

    произвольный отрезок, m>1eд., n>1eд.

    n произвольный отрезок, где m≠n.

    Построение (Рис.2)

      Проведём прямую ОХ

      На ОХ отложим ОА 1 = m

      На ОХ отложим А 1 С 1 =1ед

      Построим С 1 В 1 =m, где С 1 В 1 ┴ ОХ

      Проведём прямую А 1 В 1 , уравнение которой y=mx-m 2 в координатных осях ХОУ (масштаб на осях одинаковый).

    Примечание:


    Рис.2

    Замечание 1.

    Действительно, тангенс угла наклона этой прямой tgά 1 = С 1 В 1 /А 1 С 1 =m/1ед=m, которая проходит через точку А 1 отрезка ОА 1 =m.

    Анологично строим прямую, уравнение которой У=nx-n 2 .

    6.На оси ОХ отложим ОА 2 =n (точка А 2 случайно совпала с точкой С1).

    7.На оси ОХ отложим А 2 С 2 =1ед.

    8.Строим В 2 С 2 =n, где В 2 С 2 ┴ ОХ.

    9.Проведём прямую В 2 А 2 , уравнение которой У=nx-n 2 .

    Замечание 2. Действительно, тангенс наклона этой прямой tg ά 2 =C 2 B 2 /A 2 C 2 =n/1ед=n, которая проходит через т. А 2 отрезка ОА 2 =n.

    10. Получили т.А (m+n; mn) – точку пересечения прямых У=mx-m 2 и У=nx-n 2

    11. Проведем АД, перпендикулярную ох, где Д принадлежит оси ох.

    12. Отрезок АД=mn (ордината т. А), т.е. искомый отрезок.

    Замечание 3. а) действительно, если в нашем примере, n=4ед., m=3 ед., то должно быть АД=mn=3ед.∙4ед.=12ед. У нас так и получилось: АД=12ед.; б) прямая В 1 В 2 в этом построении не использовалась. В В – тоже.

    Существует ещё, по крайней мере, три разных способа построения отрезка АД=mn.

    Второй способ построения отрезка АД= mn , где m >1ед, n >1ед, m и n –любые.

    Анализ

    Анализ ранее построенного чертежа (рис.2), где с помощью найденного способа построения прямых У=mx-m 2 и У=nx-n 2 нашли т.А (m+n; mn) (это первый способ), подсказывает, что т.А(m+n; mn) можно найти построением любой из этих прямых (У=mx-m 2 или У=nx-n 2) и перпендикуляра АД, где АД – перпендикуляр к ОХ, АД=mn, Д принадлежит оси ОХ. Тогда искомая точка А (m+n; mn) является точкой пересечения любой из этих прямых и перпендикуляра АД. Достаточно найти углы наклона этих прямых, тангенсы которых, согласно угловым коэффициентам, равны m и n, т.е. tg ά 1= m и tg ά 2 =n. Учитывая, что tg ά 1 =m/1ед=m и tg ά 2 =n/1ед=n, где 1ед-единичный отрезок, можно легко построить прямые, уравнения которых У=mx-m 2 и У=nx-n 2 .

    единичный отрезок

    n n>1ед., m и n-любые числа.

    П

    остроение (Рис.3)

    Рис.3

    1.Проведём прямую ОХ.

    2.На оси ОХ откладываем отрезок ОА 1 =m.

    3.На оси ОХ отложим отрезок А 1 Д=n.

    4.На оси ОХ отложим отрезок А 1 С 1 =1ед.

    5.Строим С 1 В 1 =m, где С 1 В 1 ┴ ОХ.

    6.Проведём прямую А1В1, уравнение которой У=mx-m2, в координатных осях ХОУ (масштаб на осях одинаковый).

    7.Востанавливаем перпендикуляр к ОХ в точке D.

    8.Получаем точку А (m+n; mn) - точку пересечения прямой У=mx-m2 и перпендикуляра AD

    9.Отрезок AD=mn, то есть искомый отрезок.

    Вывод: Этот второй способ универсальнее первого способа, так как позволяет найти точу А(m+n;mn)и тогда, когда m=n>1ед., тогда координаты этой точки А(2m;m 2) и AD=m 2 .

    Другими словами этот метод позволяет найти отрезок, равный квадрату данного, длина которого больше 1ед.

    Замечание: Действительно, если в нашем примере m=3ед., n=5ед., то должно быть AD=mn=3ед.×5ед.=15ед. У нас так и получилось: AD=15ед.

    Третий способ построения отрезка AD = mn , где m >1ед, n >1ед и m n .

    Используя рисунок №2, проведём штриховой линией прямую В 1 В 2 до пересечения с ОХ в точке Е € ОХ, и прямую В 1 В ┴ В 2 С 2 , тогда

    В 1 В=С 1 С 2 =ОС 2 -ОС 1 =(n+1ед.)-(m+1ед)=n-m, а В 2 В=В 2 С 2 -В 1 С 1 =m-n => В 1 В=В 2 В=>∆В 1 ВВ 2 - равнобедренный, прямоугольный>∆ЕС 1 В 1 - равнобедренный, прямоугольный => ά=45º

    Т.к. ОС 1 =m+1ед., а ЕС 1 =В 1 С 1 =m, то ОЕ=ОС 1 -ЕС 1 =m+1ед.-m=1ед.

    Из рассуждений следует, что точки В 1 и В 2 можно найти по-другому, т.к. они являются точками пересечения прямой ЕВ 1 , проведённой под углом ά=45º к оси ОХ и перпендикуляров к ОХ: В 1 С 1 и В 2 С 2 , а ОЕ=1ед.Дальше, используя уже предыдущие методы будем иметь следующий способ построения.

    Единичный отрезок.

    n n>1ед., и m≠n.

    Построение (Рис.4)

    1.Проведём прямую ОХ.

    7.Отложим ОА 2 =n, где А 2 € ОХ.

    8.Отложим А 2 С 2 =1ед., где С 2 € ОХ.

    9.Восстановим перпендикуляр С 2 В 2 к оси ОХ в точке С 2 , где В 2 - точка пересечения перпендикуляра с прямой ЕВ 1 .

    10.Проводим прямую А 2 В 2 , уравнение которой У=nx-n 2 , до пересечения с прямой А 1 В 1 в точке А.

    11.Опускаем на ОХ из точки А перпендикуляр и получаем AD , равный mn, где D € ОХ, так как в координатных плоскостях осях ХОУ координаты точки А(m+n;mn).


    Рис.4

    Замечание: Недостаток данного способа такой же, как у первого способа построения, где построение возможно только при условии m≠n.

    Четвёртый способ построения отрезка AD = mn , где m и n - любые, большие единичного отрезка.

    Единичный отрезок.

    n n>1ед., m и n- любые.

    Построение (Рис.5)


    Рис.5

    1.Проведём прямую ОХ.

    2.Отложим ОЕ=1ед., где Е € ОХ.

    3.Отлтжим ЕС 1 =m, где С 1 € ОХ.

    4.Восстановим перпендикуляр в точке С 1 к оси ОХ.

    5.Построим ά=С 1 ЕВ 1 =45º, где В 1 - точка пересечения перпендикуляра С 1 В 1 со стороной ά=45º.

    6.Отложив ОА 1 =m, проводим прямую А 1 В 1 , уравнение которой У=mx-m 2 , А € ОХ.

    7.Отложим А 1 D=n, где D € OX.

    8.Восстановим перпендикуляр в точке D до пересечения его в точке А с прямой А 1 В 1 , уравнение которой У=mx-m 2 .

    9.Отрезок перпендикуляра AD = произведению отрезков m и n, то есть AD=mn, так как А (m+n; mn).

    Замечание: Этот способ выгодно отличается от первого и третьего способов, где m≠n, так как имеем дело с любыми отрезками m и n, единичный отрезок может быть меньше только одного из них, участвующего в начале построения (у нас m>1ед.).

    Общая проблема ІІ

    С помощью циркуля и линейки построить отрезок, равный отношению двух других отрезков.

    Примечание:

    единичный отрезок меньше отрезка делителя.

    Первый способ построения отрезка n = k / m , где m >1ед.

    Единичный отрезок.

    Построение (Рис.6)

    2.На ОУ отложим ОМ=k.

    3. На ОХ отложим ОА 1 = m.

    4.На ОХ отложим А 1 С 1 =1ед.

    5.Построим С 1 В 1 =m, где С 1 В 1 ┴ ОХ.

    6. Проведём прямую А 1 В 1 , уравнение которой y=mx-m 2 в координатных осях ХОУ (масштаб на осях одинаковый, равный 1ед.).

    7.Восстановим перпендикуляр МА в точке М к оси ОУ, где А- точка пересечения МА с прямой А 1 В 1 (т.е. А € А 1 В 1).

    8.Опустим перпендикуляр из точки А на ось ОХ до пересечения его с осью ОХ в точке D. Отрезок AD=ОМ=k=mn.

    9.Отрезок А 1 D= n - искомый отрезок, равный n=k/m.

    Рис.6

    Доказательство:

    1.Уравнение прямой А 1 В 1 действительно У=mx-m 2 , при У=0 имеем 0=mx-m 2 => x=m=OA 1, т а угловой коэффициент - tg

    2.В ∆АDA 1 tg 1 D=AD/A 1 D=B 1 C 1 /A 1 C 1 =>A 1 D=AD×A 1 C 1 /B 1 C 1 =k×1ед./m=mn/m=n, т.е. А 1 D=n=k/m - искомый отрезок.

    Замечание. Действительно, если в нашем примере m=3ед., k=15ед., то должно быть A 1 D=n=k/m=15ед./3ед.=5ед. У нас так и получилось.

    Второй способ построения отрезка n = k / m , где m >1ед.

    Единичный отрезок.



    Рис.7

    1.Строим координатные оси ХОУ.

    2.На ОУ отложим ОМ=k.

    3.Отложим ОЕ=1ед., где Е € ОХ.

    4.Отложим ЕС 1 =m, где С 1 € ОХ.

    5.Восстановим перпендикуляр в точке С 1 к оси ОХ.

    6.Строим С 1 ЕВ 1 =45º, где В 1 - точка пересечения перпендикуляра С 1 В 1 со стороной угла С 1 ЕВ 1 = 45º.

    7. На ОХ отложим ОА 1 = m.

    8. Проведём прямую А 1 В 1 , уравнение которой y=mx-m 2 в координатных осях ХОУ (масштаб на осях одинаковый, равный 1ед.).

    9.Восстановим перпендикуляр МА в точке М к оси ОУ, где А - точка пересечения МА с прямой А 1 В 1 (т.е. А € А 1 В 1).

    10.Опустим перпендикуляр из точки А на ось ОХ до пересечения его с осью ОХ в точке D. Отрезок AD=ОМ=k=mn.

    11.Отрезок А 1 D=n - искомый отрезок, равный n=k/m.

    Доказательство:

    1.∆В 1 С 1 Е - прямоугольный и равнобедренный, так как С 1 ЕВ 1 =45º =>В 1 С 1 =ЕС 1 =m.

    2.А 1 С 1 =ОС 1 - ОА 1 =(ОЕ+ЕС1) - ОА 1 =1ед+m-m=1ед.

    3.Уравнение прямой А 1 В 1 действительно У=mx-m 2 , при У=0 имеем 0=mx-m 2 => x=m=OA 1, а угловой коэффициент - tg

    4.В ∆АDA 1 tg 1 D=AD/A 1 D=B 1 C 1 /A 1 C 1 => A 1 D=AD×A 1 C 1 /B 1 C 1 =k ×1ед./m=mn/m=n, т.е. А 1 D=n=k/m - искомый отрезок.

    Заключение

    В своей работе мы нашли и исследовали различные методы построения с помощью циркуля и линейки отрезка, равного произведению или отношению двух других отрезков, предварительно дав своё определение этим действиям с отрезками, так как ни в одной специальной литературе мы не смогли найти не только определение умножения и деления отрезков, но даже упоминания об этих действиях над отрезками.

    Здесь нами было использовано практически все четыре этапа: анализ, построение, доказательство и исследование.

    В заключение мы бы хотели отметить возможность применения найденных методов построения отрезков в отдельных разделах физики и математики.

    1. Если продлить прямые y=mx-m 2 и y=nx-n 2 (n>m>0) до пересечения с осью ОУ, то можно получить отрезки, равные m 2 , n 2 , n 2 - m 2 (Рис.8) , где ОК=m 2 , ОМ= n 2 , КМ= n 2 - m 2 .

    Р
    ис.8

    Доказательство:

    Если х=0, то y=0-m 2 =>ОК=m 2 .

    Аналогично доказывается, что ОМ= n 2 =>КМ=ОМ-ОК= n 2 - m 2 .

    2. Так как произведение двух отрезков есть площадь прямоугольника со сторонами, равными этим отрезкам, то, найдя отрезок, равный произведению двух других, тем самым мы представляем площадь прямоугольника в виде отрезка, длина которого численно равна этой площади.

    3. В механике, термодинамике есть физические величины, например, работа (А=FS,A=PV), численно равные площадям прямоугольников, построенных в соответствующих координатных плоскостях, поэтому в задачах, где требуется, например, сравнить работы по площадям прямоугольников, очень просто это сделать, если эти площади представить в виде отрезков, численно равных площадям прямоугольников. А отрезки легко сравнить между собой.

    4. Рассмотренный метод построения позволяет строить и другие отрезки, например, используя систему уравнений y=mx-m 3 и y=nx-n 3 , можно построить отрезки, имея данные m и n такие, как m 2 +mn+n 2 и mn(m+n), так как точка А пересечения прямых, заданных данной системой уравнений, имеет координаты (m 2 +mn+n 2 ; mn(m+n), а также можно построить отрезки n 3 , m 3 , и разность n 3 - m 3 , получаемые на ОУ в отрицательной области при Х=0.

    Произведения . ... помощи циркуля и линейки . Алгоритм деления отрезка АВ пополам: 1) поставить ножку циркуля в точку А; 2) установить раствор циркуля равным длине отрезка ...

  • Биография Пифагора

    Биография >> Математика

    ... построением правильных геометрических фигур с помощью циркуля и линейки . ... помощи циркуля и линейки . Со времени возникновения задачи прошло более двух ... равна b/4+p, один катет равен b/4, а другой b/2-p. По теореме Пифагора имеем:(b/4+p)=(b/4)+(b/4-p)или ...

    • Итак, я предлагаю поступить для построения угла 30 градусов при помощи циркуля и линейки следующим образом:

      1) Сначала нам необходимо построить равносторонний треугольник, а именно он будет CFD

      Перед этим мы циркулем строим две окружности одинакового диаметра, вторая окружность строится из точки В.

      2) Теперь, CD делится пополам отрезком FО.

      3) Значит угол CFD у нас получается равным 60 градусам

      4) А в соответствии с этим наши углы CFO и DFO будут равны 30 градусам

      Наш угол построен.

      Очень часто на уроках геометрии у нас дается задание - нарисовать угол 30 градусов с помощью циркуля и линейки. Сделать это можно несколькими способами. Рассмотрим один из них.

      С помощью линейки рисуем отрезок АВ.

      При удалении помогших нам в постройке угла линий, получается долгожданный угол 30 градусов.

      Чертим окружность любого радиуса. Затем выбираем точку на окружности и проводим еще окружность такого же радиуса.

      обозначим точки. где пересекаются две окружности как C и D.

      Теперь соединяем точки с помощью прямой.

      Теперь построим равносторонний треугольник, у которого все углы будут равняться 60 градусов.

      Теперь делим этот угол пополам, и у нас получается угол 30 градусов.

      Построит угол в тридцать градусов, можно следующим способом.

      Инструкция простая:

      1) Сначала рисуете круг любого диаметра;

      2) Рисуете еще один круг, точно такого же диаметра, а сторона второго круга, должна проходить через центр первого круга.

      3) Строите треугольник FCD, как показано на рисунке вверху.

      4) И теперь у вас есть два угла по тридцать градусов, это CFO и DFO.

      Как вы видите это достаточно простой способ построения угла в тридцать градусов используя только линейку и циркуль. Научиться так строить углы может любой человек, причем ему не придется очень долго мучится, так как все просто. Удачи.

      Построить угол в 30 градусов можно достаточно быстро, используя, согласно условию, циркуль и линейку.

      Для начала рисуем две перпендикулярные прямые а и b, которые пересекаются в точке А.

      Отмечаем в любом месте на прямой b точку B.

      Строим окружность, где В центр, а 2АВ радиус.

      О точка пересечения построенной окружности с прямой a.

      Угол ВОА как раз и будет составлять тридцать градусов.

      Что угол в 30 градусов, что в 60 градусов строится в прямоугольном треугольнике с углами 30 и 60 градусов.

      1) Начинаем с окружности: из т.О проведм окружность произвольного радиуса ОА = ОВ.

      3) Соединив точки А, С, В, получим искомый треугольник АВС с углами: lt; CAB = 60 гр. , lt; CBA = 30 гр.

      Данное построение основано на свойстве катета АС,равного половине гипотенузы АВ, лежащего против угла lt; CBA = 30 градусов, соответственно, второй угол lt; САВ = 60 гр. Метод построения тоже простой.

      1. Чертим две пересекающиеся окружности.
      2. Через центры окружностей проводим прямую линию.
      3. Отмечаем точки - вершины нашего равностороннего треугольника: точка пересечения прямой, соединяющей центры окружностей, с одной из окружностей; две точки пересечения окружностей.
      4. У равностороннего треугольника углы, как известно, равны 60 градусов.
      5. Ровно половину от 60 градусов получим, если возьмем угол, расположенный на прямой, соединяющей центры окружностей: она-то как раз и делит угол-вершину треугольника ровно пополам.
    • Для построения угла в 30 градусов с помощью линейки и циркуля предлагаю воспользоваться таким вариантом: сначала чертим ромб, а затем - его диагонали. Используя свойства ромба, можно утверждать, что угол ромба будет 30 градусов. Итак:

      1. Чертим линию PQ
      2. Ставим циркуль в точку Р, раздвигаем циркуль на произвольную ширину (например, до середины нашей линии) и чертим часть окружности. Точку, где она пересекается с линией, назовем S.
      3. Ставим циркуль в точку S и чертим еще раз часть окружности, чтобы она пересеклась с предыдущей. Должно получиться так:

      1. Точку, где пересеклись две части окружности назовем Т.
      2. Циркулем из точки Т проводим еще одну часть окружности, получили точку R.
      3. Соединяем линейкой точки Р - R, S-R, R-T, T-P, T-S, получаем ромб и, принимая вр внимание свойства ромба, получаем угол 30 градусов.

      30 градусов - это половина от 60. Деление угла пополам знаете? Ну вот. А 60 градусов строится на раз. Отметьте точку и проведите окружность с центром в этой точке. Потом, не меняя раствор циркуля, проведите ещ такую же окружность, но с центром на первой окружности. Вот угол между радиусом, проведнным в новый центр, и точкой пересечения двух окружностей будет точнхонько 60 градусов.

      На мой взгляд самый быстрый способ построить угол 30 градусов с помощью линейки и циркуля состоит в следующем:

      проводим горизонтальную линию, ставим на нее в произвольной точке циркуль и проводим окружность. В точке, где окружность пересекла линию (например справа) опять ставим циркуль и проводим еще одну такую же окружность. Проводим линию через центр первой окружности и точку пересечения окружностей (красная линия) и проводим линию через точки пересечения окружностей (зеленая линия). Острый угол между красной и зеленой линиями равен 30 градусам.

      Чтобы построить нужный нам угол, понадобилось всего пять движений.